Supporting document to the all TSOs’ proposal for the methodology for coordinating operational security analysis in accordance with article 75 of Commission Regulation (EU) 2017/1485 of 2 August 2017 establishing a guideline on electricity transmission system operation and for the methodology for assessing the relevance of assets for outage coordination in accordance with Article 84 of the same Regulation

26 February 2018

Disclaimer
This draft of explanatory document is provided by all Transmission System Operators (TSOs) for information purposes only and accompanying the draft for stakeholder consultation of the all TSOs’ proposal for the methodology for coordinating operational security analysis in accordance with article 75 of Commission Regulation (EU) 2017/1485 of 2 August 2017 establishing a guideline on electricity transmission system operation and for the methodology for assessing the relevance of assets for outage coordination in accordance with article 84 of the same Regulation.
Contents

Contents.. 2

1. Introduction ... 4

2. Roles and organisation of security analysis in operational planning .. 7
 2.1 Types and chaining of security analyses in the short-term... 7
 Day-Ahead.. 7
 Intraday ... 9
 Sequential activities in intraday .. 9

3. Influence ... 12
 3.1 Introduction .. 12

3.2 Approach for assessing the influence of transmission system elements and SGUs 12
 Introduction .. 12
 Method for Influence factor determination .. 12

3.3 Methodology for the Identification of TSO observability area and external contingency list 14
 Introduction .. 14
 Process for Observability Area identification ... 16
 Process for Contingency List identification ... 17
 Update of TSO observability area and external contingency list ... 18

3.4 Methodology for assessing the relevance of generating modules, demand facilities, and grid
 elements for outage coordination (Art. 84) - RAOCM .. 18
 Introduction .. 18
 Process for Relevant Asset List identification .. 19
 Update of the Relevant Asset List ... 19

3.5 Influence thresholds selection .. 20
 Observability influence threshold .. 21
 Contingency influence threshold .. 21
 Relevance influence threshold .. 22

3.6 Power flow Identification influence factors and Power Flow Filtering factors: how they are
 complementary ... 22

4. Risk Management .. 24
 4.1 Introduction .. 24
 4.2 Risk Management principles ... 24
 4.3 Assessment of consequences .. 26
 Material and Operating Limits .. 26
 Evolving contingency ... 26
 Impact Analysis & Acceptable consequences .. 27
4.4 Identification of contingencies ...27
 Classification of Contingencies ...27
 Contingencies probability ...29
 Impact of contingencies ..30
 Exchange of information with neighbouring TSOs31
4.5 Remedial actions to coordinate ...31
 Timescale for the implementation of remedial actions31
 Identification of remedial actions to coordinate ...32
 Determination of cross-border impact ...33
 Remedial actions coordination ..34
5. Uncertainties ...35
 5.1 Introduction ..35
 5.2 Uncertainties: what are they, what is their impact on operational security analysis? ..35
 Generation ..35
 Demand ...35
 Market uncertainties ...36
 Other uncertainties ...36
 5.3 Objectives of security analyses ...36
 5.4 Managing Uncertainties ...37
 Suggested approaches ..39
 Choice for Long Term studies ...39
 Choice for short term studies ..40
 Handling of specific weather risks or other exceptional not planned event ..40
 5.5 Forecast updates principles ...40
 Forecast updates of intermittent generation ..41
 Forecast updates of load ..41
6. RSC Coordination ..43
 6.1 General requirements ...43
 6.2 Requirements linked to CGM build service ..44
 6.3 Requirements linked to coordinated regional security assessment service ...44
 6.4 Requirements linked to outage planning coordination service45
 6.5 Requirements linked to regional adequacy assessment service45
7. ENTSO-E role ...46
 7.1 Governance ..46
 7.2 Data quality ..46
 7.3 Monitoring ..47
ANNEX: Cross-reference between SO GL requirements and CSA/RAOC methodologies48
1. Introduction

The Commission Regulation (EU) 2017/1485 of 2 August 2017 establishing a guideline on electricity transmission system operation (hereinafter “SO GL”) was published in the official Journal of the European Union on 25 August 2017 and entered into force on 14 September 2017. The SO GL sets out guidelines regarding requirements and principles concerning operational security, as well as the rules and responsibilities for the coordination between TSOs in operational planning. To deliver these objectives, several steps are required.

One of these steps is the development of the methodology for coordinating operational security analysis in accordance with article 75 of the SO GL (hereinafter “CSAM”), and the methodology for assessing the relevance of assets for outage coordination in accordance with article 84 (hereinafter “RAOCM”), 12 months after entry into force of the SO GL. CSAM is subject to public consultation in accordance with article 11 of the SO GL.

The supporting document has been developed in recognition of the fact that the CSAM, which will become a legally binding document after NRAs’ approval, inevitably cannot provide the level of explanation, which some parties may desire. Therefore, this document aims to provide interested parties with the background information and explanation for the requirements specified in the CSAM.

The supporting document provides explanations developed in the following chapters:
1. 2-Roles and organisation of security analyses: this is a transversal part
2. 3-Influence: this chapter is linked to requirements provided in Art 75(1)(a) and Art 84 of SO GL
3. 4-Risk Management: this chapter is linked to requirements provided in Art 75(1)(b)
4. 5-Uncertainties: this chapter is linked to requirements provided in Art 75(1)(c)
5. 6-RSC coordination: this chapter is linked to requirements provided in Art 75(1)(d)
6. 7-ENTSO-E role: this chapter is linked to requirements provided in Art 75(1)(e)

Additionally, a cross-reference is available in Annex. This table reminds the detailed wording of articles of SO –GL linked to CSAM-RAOM and how they are addressed in CSAM or RAOM.

Link with other methodologies

CSAM and RAOCM are also in relation with some other methodologies required by SO GL or the Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management (hereinafter CACM). More precisely:
CSAM provides several requirements which are identified by TSOs as necessary to be harmonized at pan-European level and which shall be respected by the more detailed proposals set-up at CCR level, as requested by SO GL Art. 76-77. Such requirements concern:

- Identifying which remedial actions need to be coordinated, i.e. remedial actions which cannot be decided alone by a TSO but need to be agreed by other affected TSOs
- Identifying which congestions on which grid elements need to be solved at regional level under the coordination task delegated to a RSC, in accordance with SO GL Article 78
- Identifying which rules need to be applied to ensure inter-RSC coordination when RSCs provide their tasks to the TSOs,
- Requesting a minimum number of intraday security analyses to be done by a TSO (or delegated to its RSC)

Please note that the process for the management of the remedial actions in a coordinated way is not part of CSAM. This shall be developed by TSOs at CCR level in accordance with Art 76-77, while respecting the requirements set-up in CSAM.

CSAM also does not provide requirements to determine which remedial actions are of cross-border relevance and can be used to solve congestions which need to be solved at regional level; this is left to regional choice at CCR level when developing the proposal in accordance with Art 76-77 (and the proposal in accordance with Article 35 of CACM)

CSAM is also in relation with the all-TSOs methodology Common Grid Model V3 (CGMM V3) developed in accordance with SO GL Articles 67 and 70, as follows:

- CSAM provides requirements defining which remedial actions shall be included (or may be included) in an individual grid model (IGM), while CGMM defines how to include them in the IGMs, and then in the CGMs.
- CSAM defines timestamps in day-ahead (named T0 to T5) which are required for a proper inter-regional coordination in day-ahead, while some of these timestamps are used in the CGMM to define the process of building the IGMs and CGMs required by this coordination.

Additional links exist at regional level between:

- Proposals required by Art 76-77 of SO GL which deal with the management of the remedial actions in a coordinated way and Art 35 of CACM
- Proposals required by Art 76-77 of SO GL which deal with the cost sharing of the remedial actions managed in a coordinated way and Art 74 of CACM

Such links are summarized below (only main interactions are shown):
Supporting document to the all TSOs’ proposal for the methodology for coordinating operational security analysis in accordance with article 75 of Commission Regulation (EU) 2017/1485 of 2 August 2017 and for the methodology for assessing the relevance of assets for outage coordination in accordance with Article 84 of the same Regulation.

Pan-European level

SO GL

CSAm (75)
- xborder impacting RemedialActions
- General rules for coordination
- Influence factors (Obs area)
- Risk management
- Inter-RSC Coordination
- Uncertainties

Same method

Proposal Art 76-77
- Intraday frequency
- Management of RemedialActions in a coordinated way and Identification of most effective ones
- Cost sharing

Proposal Art 35 & Art 74
- xborder relevant RemedialActions
- Cost sharing

CACM

CGM V1
- Build of CGM for CapCalculation

RAOCm (84)
- Definition of relevant assets

CGM V3
- Build of CGM for OpSecurityAnalysis

CCR level
2. Roles and organisation of security analysis in operational planning

In the long term (year-ahead to week-ahead), operational security analyses are mainly focused on the outage planning process to ensure that these outages will be compatible with a secure operation and on the evaluation on general assessment of the expected security of the system in terms of expected congestion and adequacy. SO GL provides requirements to do these activities in a coordinated way, and CSAM/RAOCM provides for some additional rules (such as the determination of exceptional contingencies, the activities needed to facilitate the identification in the short term of remedial actions which need to be coordinated, the management of uncertainties in long-term studies…). Those rules are explained notably in the chapters Risk management and Uncertainties in this document.

In the short-term, mainly from day-ahead, operational security analyses mainly deal with the identification of risks on the interconnected system of operational security limits violations, trying to find the appropriate remedial actions, according to SO GL Article 21, and ensuring the coordination of these remedial actions.

These activities –long and short term– are also linked to the capacity calculation processes which determine capacities between bidding zones which can be offered to the market participants; those capacities are computed on the basis of a set of expectations. It’s only when these expectations are verified in real time that the use of these capacities will respect the security of the system. As a result, at any moment ahead of real time, one of the role of security analyses is to check that the positions taken by market participants are indeed compatible with the system security, and if it is not the case, to prepare remedial actions.

According to SO GL, in long term as well in short term, coordinated security analyses are done on a common grid model in the operational planning phase.

The following chapter provides a focus on the realisation of security analyses in the short-term in order to facilitate the description of the security analyses done by TSOs and by RSCs in accordance with SO GL and CSAM and how they interfere between them. As such, this chapter 2 of the supporting document provide general information which is transversal to the different topics covered by CSAM and has notably interactions with chapter 4 “risk management” and 6 “RSC coordination”.

2.1 Types and chaining of security analyses in the short-term

Day-Ahead

TSOs identify that a very important step to assess security is at the end of D-1 and needs a well-coordinated sequential process, for the following reasons:

- the results of the Day-Ahead market are known,
- there exists still a relatively long period of time ahead of real time to allow in-depth studies and relatively complex processes, or to decide a remedial action which needs a long preparation time (such as starting a unit)
- planned outages are finalized and late forced outages can already be taken into account
- quite good forecasts for load and intermittent generation are available
- most of the contracted reserves (FCR, FRR, RR) have been allocated to their suppliers.
This process shall include regional coordination but also cross-regional coordination through RSCs coordination. This process shall allow:

- to design RAs in a coordinated manner at a regional level, using the agreed conditions pursuant to SO GL art 76-77,
- but also, to identify cross-regional effects of such RAs and ensure they are agreed by all affected TSOs,
- or, alternatively, when a congestion cannot be relieved using available RAs at regional level (or in an inefficient way), to elaborate cross-regional RAs able to relieve.

It is the reason why the process described in Article 32 has been introduced in the CSAM. It is inspired of the current existing process between Coreso, TSCNet and their TSOs, with an improvement enhancing the inter-RSC coordination in order to ensure that potential RAs identified in one region are taken into account for their effects on the adjacent regions, before final RAs decided at this stage are identified and validated in each region. This process broadly consists of the following steps:

- Build of an initial CGM
- Coordinated regional security assessment in each region (where inter-RSC coordination is already possible)
- Build of revised IGMs/CGM including (preliminary) RAs identified in the previous step
- Secondary coordinated regional security assessment
- Final exchange of information between all RSCs and TSOs to consolidate final results of the security analyses and agreement of all decided RAs. (A TSO may delegate to its RSC its agreement).

The resulting process is shown in the following scheme.

<table>
<thead>
<tr>
<th>Outputs</th>
<th>IGM</th>
<th>CGM</th>
<th>SA results</th>
<th>Updated CGM</th>
<th>Updated SA results</th>
<th>Final validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO</td>
<td>IGM creation and delivery</td>
<td>RSCs to merge IGMs into a CGM and deliver it to all TSOs and RSCs</td>
<td>Each RSC to perform a coordinated regional security assessment</td>
<td>Updated IGM</td>
<td>RSCs to perform a coordinated regional security assessment</td>
<td>TSOs to organize a session for finalization of RAs to participate or be represented</td>
</tr>
<tr>
<td>RSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Final set of agreed remedial actions</td>
</tr>
<tr>
<td>T0</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
<td>T4</td>
<td>T5</td>
<td></td>
</tr>
</tbody>
</table>

During this step, exchange between TSOs and RSCs could be needed to discuss the proposed remedial actions

At latest hour T0, all TSOs and RSCs shall deliver an updated IGM.

At latest hour T2, each RSC shall perform a secondary coordinated regional security assessment as required by Art 76.22. Each RSC shall deliver a result of this regional coordinated security assessment.

At latest hour T4, TSOs shall make available to all TSOs and RSCs the corresponding CGM for hour T3.

Figure 1
The result of this process will consist in security assessment results and agreed remedial actions which will be taken as a reference basis. Further intraday security analyses results should be assessed in the intraday with respect to this reference basis.

With respect to the heavily constrained period of the end of day-ahead in the TSOs and RSCs rooms, while ensuring its efficiency, this process needs to start at a given time T0 and end not later than a given time T5. In case there remains some security violations not solved (e.g. no agreement on the RAs), Art 33(4) provides that concerned TSOs and RSCs shall agree on the needed steps in intraday to address them at best.

This process is new and is expected to evolve with practice; it is also expected to evolve in duration because of evolution of tools. For these reasons, and considering this process does not impact other stakeholders, TSOs consider worth not to hard-lock the values of the hours T0 to T5 in the methodology, but to leave them open for definition/update by TSOs, subject to publication on ENTSO-E website.

Intraday

In intraday, as mentioned above, there is no good argumentation which would justify a request to synchronize the security assessments done by the different TSOs and RSCs everywhere in Europe. It could be even detrimental to the ability to design the most adequate timings, with respect to control area/region specificities. This orientation is also needed to actually leave TSOs of each CCR with their full ability to determine their needs in terms of frequency and hours of coordinated regional security analyses at CCR level in application of SO GL Art 76-77.

Nevertheless, in order to ensure a minimal common pan-European approach in terms of securing security analyses results with respect to the impacts of uncertainties, which need to update IGM/CGM and assess system security on these updated system forecasts, the CSAM includes a request for each TSO to run at least 3 coordinated security analyses for its control area in intraday. These analyses can be totally or partially covered by the RSC services agreed at CCR level. This value is consistent with the fact that the CGM methodology developed pursuant to SO GL Art 70 requests all TSOs to update their IGMs at least 3 times in intraday and RSCs to produce corresponding CGMs.

Sequential activities in intraday

In general, in intraday, in order RSCs to realize regional coordinated security analyses and TSOs to validate their results, the following tasks have to be performed:

- TSOs have to prepare an IGM with their updated values, included previously agreed RAs. When delivering their IGM, they may run local security analyses to identify constraints mainly due to internal flows and include corresponding RAs if needed. But those local security analyses are not always pertinent, for example when they are expected to be eliminated when more precise flows are computed on the CGM.
- CGMs have to be built by RSCs
- RSCs have to perform coordinated regional security assessment, as requested by SO GL Art 78. This includes reporting to TSOs on congestions identified, proposing needed RAs, and exchanging with the TSOs until the RAs are validated (RAs may be improved/modified during this step) or refused.
Where applicable, depending on the agreed capacity calculation methodology in intraday, these steps may be followed by an additional intraday capacity calculation step. Note that such a step is a complex one since capacity calculation processes are long and demanding.

On the other hand, TSOs are requested to run coordinated security analyses on their control area, pursuant to Art 70. In order to clarify the respective scope of these security analyses and the regional coordinated security assessments performed by RSCs, CSAM Article 19 requires TSOs to establish the list of grid elements on which congestions shall be monitored by RSCs. It is worth to note that each TSO may delegate partly or totally these coordinated security analyses to the RSC.

It is expected that such a list should comprise all major grid elements whose congestions are influenced by the effects of the meshed interconnected system, but might exclude those grid elements where congestions are due to local flows. Article 19 requires that this list shall include at least critical network elements, since those elements are identified as those mainly affected by cross-border exchanges.

The following scheme represents the successive steps in the day of the different kind of analyses.
The following table summarizes the respective objectives of the different kinds of security analyses/assessments considered in the methodology.

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Reference(s)</th>
<th>Objective</th>
<th>Grid model</th>
<th>Run by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local preliminary assessment</td>
<td>CSAM Article 19</td>
<td>Optional preliminary operational security analysis run to improve the IGM quality, i.e. removing some of the constraints (not likely to be removed by regional coordinated security analysis)</td>
<td>Chosen by TSO when preparing its IGM (e.g. an updated TSO IGM integrated in an “old” CGM)</td>
<td>TSO</td>
</tr>
<tr>
<td>Coordinated security analysis</td>
<td>SO GL Art 72 (1-4) and Art 74(1)</td>
<td>Each TSO shall ensure security on its control area. It shall share the results with affected TSOs, and prepare RA in a coordinated way when needed. Art 77.3 provides that TSOs are supported by the RSC to fulfil this task of performing a coordinated security analysis.</td>
<td>CGM at least (the CGM can be extended/comp eleted e.g. by more local detailed data (low voltage levels)).</td>
<td>TSO</td>
</tr>
<tr>
<td>Regional coordinated security assessment</td>
<td>SO GL Art 77-78</td>
<td>The RSC shall assess the security of the system at regional level, i.e. on the grid elements that it monitors for TSOs.</td>
<td>CGM</td>
<td>RSC, in interaction with TSOs</td>
</tr>
</tbody>
</table>
3. Influence

3.1 Introduction

Articles 75 and 84 of the SO GL require TSOs to define:

1. methods for assessing the influence of transmission system elements and SGUs located outside of a TSO’s control area in order to identify those elements constituting the observability area and the contingency influence thresholds above which contingencies of those elements constitute external contingencies;

2. a methodology for assessing the relevance of assets for outage coordination

Following chapters provide explanations to the Title 2 of the CSAM (“Determination of influencing elements”).

Firstly, general principles of the method for assessing the influence of external grid elements on a TSO’s control area are explained. Furthermore, simple technical reasons for determination of observability area, contingency list and relevant assets list is given.

Then, processes and criteria to be applied by each TSO to identify elements constituting the observability area, the external contingency list and the Relevant Assets list according to art.75 and art.84 of the SO GL are described.

At the end, general views on thresholds and their selection are provided.

3.2 Approach for assessing the influence of transmission system elements and SGUs

Introduction

A computation method for assessing the quantitative influence of an external element on a TSO’s control area has been identified by All TSOs.

Such method is based on the calculation of the so called “influence factor” which is, according to the SO GL, the numerical value used to quantify the greatest effect of the outage of a transmission system element located outside of the TSO’s control area, excluding interconnectors, in terms of a change in power flows or voltage caused by that outage, on any transmission system element. The higher is the value the greater the effect.

Such “influence factor” can be then compared with an influence threshold (which can vary depending on the scope of the assessment) to decide if the element have a relevant influence or not.

Such a quantitative method is based on the definition of a set of computations to run, including which data model is to be used, how to make computations and finally how to compute the influence factors from these computation results. The description of the computation formulae is provided in the Annex I of the CSAM and RAOCM proposal.

Method for Influence factor determination

1 Art 75(2) specifies that grid elements located in the network of transmission-connected DSO can be part of the observability area and Art 43(2) of SO GL allows TSOs to consider elements located in the network of non-transmission-connected DSO to be part of the observability area.
The influence of elements located outside TSO’s control area being grid elements, generation units and demand facilities on a TSO’s control area can be assessed in terms of power flows and/or voltage deviation.

1. Since voltage regulation are typically a local issue and dynamic aspects are specific in terms of location and nature of the phenomenon to analyse, power flow influence factors are considered the most relevant ones in the scope of the CSAM. In line with this, the CSAM requires that, when a quantitative assessment must be performed, it shall be based on power flow influence factors and, only optionally (according to the TSO who is performing the assessment), on voltage influence factors or dynamic studies. In the case of dynamic studies, this should be submitted to an agreement between involved TSOs and the models and studies used for that determination shall be consistent with those developed in application of Articles 38 or 39 of SO GL.

Influence factors assessment (Figure 3) can be performed in:

a) “Horizontal” direction: when a TSO (e.g. TSO A) is assessing the influence of elements located in another control area (e.g. Control Area B) on its network;

b) “Vertical” direction: when a TSO (e.g. TSO A) is assessing the influence of elements located in DSO/CDSOs systems directly connected to its network.

c) “Diagonal” direction: when a TSO (e.g. TSO A) is assessing the influence of elements located in DSO/CDSOs system directly connected to another TSO (e.g. TSO B)

When performing a quantitative “horizontal” assessment, each TSO shall compute influence factors, inside its Synchronous Area (SA), using the Year-ahead scenarios and CGMs developed according to SO GL Article 65, as these scenarios:

- Shall be built every year by TSOs and therefore will be available

2 The tests already performed by TSOs on the mathematical method for assessing the influence should be based on a kind of an N-1-1 analysis, as this approach revealed to be a good compromise in order to (i) identify elements which have a significant influence only when another element in the grid is out of service and (ii) limit the number of outage combinations to a feasible one.

3 Influence assessment of elements of non-transmission-connected DSOs shall be performed in qualitative way only and agreed between TSO and these DSOs.
• Contain fully meshed grid with normal switching state
• Shall represent different seasonal situations

When performing a quantitative “vertical” assessment, each TSO can compute influence factors using the Year-ahead scenarios and CGMs developed according to SO GL article 65 or national grid models and scenarios considered relevant for the scope of the computations. These grid models have to be complemented with a representation of the parts of the DSO/CDSOs grids which are under assessment.

“Diagonal” assessment can be performed only on the DSO/CDSOs elements that connecting TSO (e.g. TSO B) has modelled in its IGMs developed according to SO GL article 67. In this way it is assumed that the influence of DSO/CDSO elements (e.g. DSO/CDSO B) on connecting TSO (e.g. TSO B) are greater than on other TSOs (e.g. TSO A).”

Year ahead scenarios contain the normal switching state which can be different for different situations. Planned outages are usually not included. To consider different topologies and different thermal capacities of the element, it could be necessary to analyse more than one year ahead scenario (set S of scenarios) during calculation of influence factors.

3.3 Methodology for the Identification of TSO observability area and external contingency list

Introduction

When performing operational security analyses, each TSO shall, in the N-Situation, simulate each contingency from its “contingency list” and verify that the operational security limits in the (N-1)-situation are not exceeded in its control area (Art.72.3 SO GL). Such contingency list, in a highly meshed network, shall include all the internal (inside the TSO’s control area) and external (outside TSO’s control area) contingencies that can endanger the operational security of the TSO’s control area (Art.33 SO GL).

Hence, each TSO is due to analyse periodically, by numerical calculations, the external transmission network with influence on its control area. The external contingency list is the result of that analysis and includes all the elements of surrounding areas that have an influence on its control area higher than a certain value, called “contingency influence threshold”. “Contingency influence threshold” means a numerical limit value against which the influence factors are checked and the occurrence of a contingency located outside of the TSO’s control area with an influence factor higher than the contingency influence threshold is considered to have a significant impact on the TSO’s control area including interconnectors.

Each TSO has to take into account the elements of this external contingency list in its contingency analysis. Therefore, in order to properly assess the security state of the system in its control area and to properly simulate the effect of external contingencies, a TSO has to adopt a model of the external grid wide enough to guarantee accurate estimations (in the control area) when performing the N-1 analysis of the elements of the external contingency list (and of internal list). For this reason, a so called “observability area”, larger than the TSO’s control area, must be identified and monitored. Such an observability area is also necessary to perform correct estimation of the real-time values on the elements belonging to the control area.

“Observability area” means a TSO’s own transmission system and the relevant parts of distribution systems and neighbouring TSOs’ transmission systems, on which the TSO implements real-time monitoring and modelling to maintain operational security in its control area including interconnectors.
All the external elements with an influence on the control area higher than a certain value, called “observability influence threshold” (equal or lower than the “contingency influence threshold”), constitute the “observability list”. The “observability list” could be a non-consistent model. For example, a certain external line could be part of the observability list meanwhile its neighbour branches are not in this list. Therefore, the model must be completed with additional network elements and some equivalents to obtain the consistent and fully connected observability area. The observability area includes the control area and the external network, so each TSO is able to simulate properly any contingency of the internal and external contingency list when performing the N-1 analysis (Figure 4).

The observability area represents the minimum set of grid elements for which a TSO is entitled to receive data (electrical parameters, real time measurements, …) from the owner or the entity in charge of them.

The definition of an external contingency list and an observability area is mainly needed for the application of SO GL requirements for the close to real time operational security analysis, because for security analyses ahead, the following requirements apply:

- For security analyses up to and including intraday analyses, Art 72(4) requires that a TSO shall use “at least the common grid models established in accordant to Articles 67 to 70”;

- For security analyses up to and including intraday and close to real-time analyses, Art 77(3)(a) prescribes that each TSO shall use the services of a regional security coordinator. Art 78(1)(a) prescribes that each TSO shall provide the regional security coordinator with its updated contingency list and Art 78(2)(a) prescribes that the regional security coordinator shall perform regional security analyses on the basis of a common grid model and of the contingency lists provided by each TSO. These requirements ensure that the regional security coordinator will perform the security analyses on a common grid model (larger than any observability list) and taking into account all the contingencies mentioned by each TSO of the capacity calculation region.
Nevertheless, individual grid models are in general derived from initial real-time snapshots. As such, an appropriate quality of the observability area is a prerequisite to establish good quality snapshots and IGMs and, consequently, establish trustable CGMs.

Process for Observability Area identification

With ever growing decentralized production from renewable energy sources influence of DSOs elements on the transmission system increases. To have better state estimations and improve security assessment TSOs could have the need to expand their observability area in vertical direction i.e. to the DSOs grids.

The process set up in the Article 4 of CSAM for identifying external elements to be included in a TSO’s Observability Area is based on 3 main steps (Figure 5):

a) **Qualitative vertical assessment:**

The TSO in coordination with transmission-connected DSOs can identify in qualitative way DSO’s elements which inclusion in observability area list may be necessary. If DSOs agree on this approach and TSO and DSOs agree on the effective list of elements which shall be part of TSO’s observability area then TSO shall not be obliged to do the assessment for these elements and will not require the data model from DSOs to proceed to this assessment.

b) **Quantitative vertical assessment:**

If an agreement in step 1 cannot be found, TSO shall use the mathematical method provided in the Annex I of CSAM for assessing the influence of elements.

To perform such calculation TSOs have to use detailed grid models in order to have results. For this reason, each TSO shall ask DSOs for technical parameters and data which may be necessary for creating such a model. For vertical assessment TSOs can use either detailed national grid models or CGMs, as regards the model of the TSO grids.

If a DSO element has an influence factor higher than the observability influence threshold, it will be included in corresponding TSOs lists (with additional elements needed to obtain fully connected observability area). For these elements DSO shall provide structural and real-time data to the TSO according to SO GL requirements.

c) **Quantitative horizontal and diagonal assessment:**

TSO shall use the mathematical method provided in the Annex I of CSAM for assessing influence of elements located in other Control Areas. If such element has an influence factor higher than the observability influence threshold, it will be included in corresponding TSOs lists (with additional elements needed to obtain fully connected observability area).

If during this assessment TSO detects a DSO element located outside its control area, assuming that DSO grid is modelled, to be included in its corresponding list, technical parameters, structural, forecast and real-time data of DSO elements and additional elements needed to obtain fully connected observability area have to be exchanged between TSOs in accordance to Key Organisational Requirements, Roles and Responsibilities in relation to data exchange (KORRR) developed by all TSOs in accordance with SO GL Art 40(6).

4Where deemed necessary, influence assessment of elements of non-transmission-connected DSOs shall be performed in qualitative way only and agreed between TSO and these DSOs.
TSOs may also use dynamic studies (e.g. rotor angle evaluation, but not limited to it) for assessing the influence of elements located outside its control area or in DSO/CDSO directly connected to it, using models, studies and criteria, consistent with those developed in application of Articles 38 or 39 of SO GL. Technically TSO’s observability area will consist of elements, identified as described in previous steps, and all the bus bars to which these elements could be connected. To have accurate state estimations and to be able to assess its system state by preforming contingency analysis (N-1 analysis) TSOs must have all injections and withdrawals on these bus bars. For these reasons, it is necessary that SGUs which are inside of identified Observability Area to be part of it. In some cases (e.g. SGUs connected to DSO networks), TSOs can choose to represent these SGUs in an aggregated manner.

Process for Contingency List identification

As required by Article 33 of SO GL each TSO shall define a contingency list, including internal and external contingencies of its observability area. Article 5 of the CSAM provides the steps for identifying the minimum set of external elements, which shall be included in a TSO’s (external) contingency list (Figure 6):

- **Quantitative vertical assessment:**
 TSO shall use the mathematical method provided in the Annex I of CSAM for assessing influence of elements.

If a DSO element (included in the TSO’s Observability Area according to paragraph 3.2) has an influence factor higher than the contingency influence threshold, it will be included in corresponding TSOs contingency list.

- **Qualitative vertical assessment:**
 External contingency list may be complemented with grid elements, generating modules and demand facilities being part of the TSO’s Observability Area. Since there is not a direct impact on SGUs included in the contingency list, TSOs can determine such a need on a qualitative basis and are not required to perform computations for the inclusion of a SGU’s asset in the contingency list.

- **Quantitative horizontal and diagonal assessment:**
TSO shall use the mathematical method provided in the Annex I of CSAM for assessing influence of elements located in other Control Areas. If an element located outside TSOs control area has an influence factor higher than the contingency influence threshold, it will be included in corresponding TSOs contingency list.

- Qualitative horizontal assessment:

Extraneous contingency list may be complemented with grid elements, generating modules and transmission connected demand facilities being part of the TSO’s Observability Area.

Update of TSO observability area and external contingency list

Main goal of the methodology described above is to have harmonized quantitative approach for defining observability and external contingency lists at Synchronous Area level. For this reason, a first harmonized assessment (based on this approach) shall be performed once the CSAM is approved.

Then, taking into account that significant changes in the influence factors can be induced only by (relevant) changes in the grid structure, it is not needed to impose a frequent update of the mathematical assessment, which requires time and resources to be performed.

For this reason, a 5 years period is considered the optimal compromise between the necessity to monitor the evolution in the influence factor and the necessity to not spend resources for unnecessary assessments. This does not prohibit TSOs to do assessment more frequently.

3.4 Methodology for assessing the relevance of generating modules, demand facilities, and grid elements for outage coordination (Art. 84) - RAOCM

Introduction

A definition of Relevant Assets has been introduced in the SO GL to ensure that only those elements participate in the outage coordination process whose individual availability statuses have a significant influence on another element (e.g. larger Power Generating modules that are closer to the border are more likely to be qualified as relevant assets than smaller units that are farther from the border). Hence relevant assets are defined as those assets, whether they are grid elements power
generating modules or demand facilities, for which the individual availability status has an impact on the operational security of the interconnected system.

In order to assess the relevance of a given asset, All TSOs jointly developed an approach that is aligned to the one adopted for identifying observability areas and external contingency lists.

Process for Relevant Asset List identification

Article 4 of RAOCM provides steps for identification of elements which could be relevant for outage coordination process. Furthermore, RAOCM provides TSOs of each CCR with a process allowing to determine Relevant Assets list and defines requirements concerning updates of Relevant Assets List.

Once power flow influence factors (and, where relevant, voltage influence factors) of grid elements, generating modules and demand facilities located outside TSO’s control area have been computed according to the mathematical method published by all TSOs they can be compared with an appropriate relevance influence threshold, for determining the relevant asset list proposals. If the influence factor of an external element is higher than the threshold, this element should be considered as part of the relevant asset list proposal of the TSO. Such threshold can be different for power flow influence factors and voltage influence factors.

Relevant asset list proposal shall be also complemented with:

- all grid elements located in a transmission system or in a distribution system which connect different control areas (as required in SO GL);
- all combinations of more than one grid elements whose simultaneous outage state can be necessary for any particular material or system reason and which can threat the system security, according to TSO’s experiences. This is needed because, in the described approach, no contemporaneity of outages (i) is considered;
- all elements which outage status can have an impact on the operation (such as reducing physical capacity) of DC links between SAs;
- critical network elements identified in accordance with Regulation (EU) No 2015/1222 for the relevant outage coordination region, provided that their status of critical network element is stable along the year. The list of critical network elements is defined differently for each capacity calculation region and can change over time.

Since a methodology aimed at identifying relevant assets at synchronous area level should be simple enough (based on one outage) to be implementable and to produce results in a proper time, not all the possible combinations of outages can be tested. For this reason, each TSO shall include in its relevant assets list proposal combination of outages which based on experience could significantly affect the neighbouring control areas.

All TSOs of each CCR shall define the relevant assets list based on TSOs proposals and according the process defined in Article 4 of RAOCM.

Update of the Relevant Asset List

5 The Outage Coordination Region shall be considered equal to the Capacity Calculation Region unless all concerned TSOs agree to merge two or more outage coordination regions into one unique outage coordination region.
The harmonization of the approach to be adopted for defining the relevant asset list of each outage coordination region is the main goal to be achieved applying the methodology described above, especially through the quantitative assessment of the influence factors. For this reason, a first harmonized assessment (based on this approach) shall be performed once the methodology is approved. Then, taking into account that significant changes in the influence factors can be induced only by (relevant) changes in the grid structure, it is not needed to impose a frequent update of the mathematical assessment, which requires time and resources to be performed. For this reason, if no major changes are observed in the grid structure (e.g. commissioning or decommissioning of assets that can affect influence factors of already existing elements) a 5 years period is considered the optimal compromise between the necessity to monitor the evolution in the influence factor and the necessity to not spend resources for unnecessary assessments. Additionally, a more stable list of the relevant assets is seen as an added value for the Stakeholders: for example, the decision to invest in IT system for facilitating the information exchange required in the SO GL can be taken in an easier way if they already know that, once included, they will be in the list for a long period.

Relevance of elements commissioned between two mandatory relevance factors computations, can be performed in qualitative way. If the owner of the new element disagrees with such approach, TSO shall use method for assessing influence of elements defined in previous chapters. Anyhow, taking into account the requirement set in Art.86.1 and 88.1 require a yearly update, a yearly qualitative re-assessment of the relevant asset list shall be performed in order to better monitor the quality of such list.

3.5 Influence thresholds selection

According to the CSAM, RAOCM and the processes described in chapter 3 and 4, when a quantitative assessment is applied, thresholds have to be defined for performing proper selections. 3 different thresholds have been identified:

- observability influence threshold
- contingency influence threshold
- relevance influence threshold

![Figure 7]
Defining a common threshold for each list at level of Synchronous Area is not achievable and not advisable:

- Some TSOs need larger view on the rest of the interconnected system due to location and structure of their grid
- For other TSOs this necessity is lower and it is not efficient to impose them to invest more resources on it.

Hence, the CSAM and RAOCM set a rather small range (different for each list) in which each TSO shall select the unique value for each threshold, and publish them. Such ranges have been defined according to the outcomes of a dedicated testing phase and to some general principles:

1. Thresholds shall not be lower than the expected precision of measurements in a SCADA, including state estimation improvement. Such a precision can be estimated roughly around 1 – 3%.

2. Thresholds shall not be higher than those needed to identify a change in a flow, deemed as relevant on the basis of operators’ experience. For example, a change of more than 10 to 20% in the flow⁶ (due to any reason) is seen as a warning information needing careful evaluation and monitoring from a dispatcher.

3. Thresholds for observability area definition should be lower than for external contingency list definition, because the observability area is at the basis of the quality of the computations and because external contingency items are a subset of items constituting the observability area.

4. Thresholds shall not be too high since only the impact of single outages are considered in the mathematical approach while, in real-time operation, the contemporaneity of different outages can appear.

Observability influence threshold

The choice of the observability power flow influence threshold (and, where relevant, of the observability voltage influence threshold) is important since it shall be:

- low enough to guarantee good quality results of real-time state estimation and operational security analysis;
- high enough to avoid too big observability areas (which can induce higher costs and excessive time requirements for online computations).

Contingency influence threshold

The choice of the contingency power flow influence threshold (and, where relevant, of the contingency voltage influence threshold) is crucial since it shall be:

- low enough to minimize the risk that the occurrence of a contingency identified in another TSO’s control area and not in the TSO’s external contingency list could lead to a TSO’s

⁶ e.g. 200MW of change on a “big” line in 400 kV, with a N flow in the vicinity of 2000 MW
system behaviour deemed not acceptable for any element of its internal contingency list; the occurrence of such a contingency shall notably not lead to an emergency state;

- high enough to avoid too long contingencies lists that are not compatible with time requirements for operational security analysis.

Relevance influence threshold
The choice of the relevance power flow influence threshold (and, where relevant, of the relevance voltage influence threshold) is crucial since it shall be:

- low enough to minimize the risk that outages of not relevant grid element could treat the security of neighbouring control areas;
- high enough to avoid too long relevant asset lists that are not compatible with time requirements of the outage coordination process.

3.6 Power flow Identification influence factors and Power Flow Filtering factors: how they are complementary
The Power Flow Filtering influence factor on flows is the maximum Outage Transfer Distribution Factor\(^7\) of an external element \(r\) on any given internal element \(t\) in any scenario and taking into account any element \(i\) disconnected.

Hence, \(IF^PF_r\) expresses the increase of flow on branch \(t\) after tripping of branch \(r\) in relation to the flow on branch \(r\) in \(n\) condition (when the element \(i\) is out of service), as shown below.

![Diagram](image)

When computing the Power Flow Identification influence factor, the Outage Transfer Distribution Factor (OTDF) is multiplied by the ratio of Permanent Admissible Transmission Loading between the influencing element \(r\) and the influenced element \(t\).

The Power Flow Filtering influence factor is only an image of the load transfer and is independent on the flow of the assessed element. The Power Flow Identification influence factor assesses the influence of an external element \(r\) on the internal element \(t\) taking into account the PATL of the elements involved.

\(^7\) Outage Transfer Distribution Factors (OTDFs) are a sensitivity measure of how a change in a line’s status affects the flows on other lines in the system.
As a consequence, it emphasizes the consequences of a load transfer from a high capacity element on a low capacity element. This approach aims at guaranteeing that the outage of a highly loaded element does not endanger elements with a low capacity. Since influence on flows is assessed independently on the loading of the element in the investigated scenarios, using elements PATL allows simulating the consequences of highly loaded elements outages. Thus, for external contingency lists, the Power Flow Identification IF is more relevant than the Power Flow Filtering IF as it is much more significant for system security, better describing the risk of overload.

Anyhow, using this approach, low PATL external elements may be excluded even if they have a high Power Flow Filtering influence factor. It could be problematic in the determination of the observability area. However, results showed that normalized approach shall be also preferred when assessing the observability area. Indeed, without normalization, many small elements located in lower voltage levels have a high influence factor. Using a non-normalized approach could lead to an important increase of elements of the observability area, although these elements are not needed to describe it correctly.

The selection with a normalized approach gives results more in line with the current description of the current observability areas in Continental Europe, highlighting the regional 400kV frame.

However, computation of the Power Flow Identification influence factors requires the introduction of a ratio of PATLs which can be rather high. In some cases, a high Power Flow Identification influence factor may be the result of a combination of a high PATL ratio and of an OTDF so small that it is of the same order of magnitude as the expected precision of measurements in a SCADA. Such cases must be discarded from the results by filtering elements or SGUs whose Power Flow Filtering influence factor on flows is lower than a threshold representative of the expected precision of measurements in a SCADA.

Hence: an element shall be included in a set if its Power Flow Identification influence factor on flows is higher than the “Power Flow Identification threshold” provided in the CSAM or RAOCM and if its Power Flow Filtering influence factor on flows is higher than the “Power Flow Filtering threshold” provided in the CSAM or RAOCM.

In the way it is computed, influence of an element on flows is independent on the load/generation pattern (as an approximation in AC approach, strictly in DC approach) which allows assessing the influence of elements on a limited number of scenarios.
4. Risk Management

4.1 Introduction

Coordinated operational security analysis deal with the identification of risks on the interconnected system of operational security limits violations, trying to find the appropriate remedial actions, according to SO GL Article 21, and ensuring the coordination of these remedial actions. In order to ensure system security, TSOs have to assess the consequences of events that are unscheduled but likely to occur on the system, and ensure that the grid remains secure after the occurrence of any of those events taking into account the identified remedial actions. When identifying the most effective and economically efficient remedial actions, TSOs have to make sure that the application of these remedial actions does not endanger neighbouring TSOs grid by coordinating them. This chapter covers thus the parts of SO GL Article 75 referring to principles for common risk assessment.

4.2 Risk Management principles

In current practices, not only in Europe but also in most large grids among the world, risk management is handled through the N-1 principle meaning that the grid operations must remain secure after the loss of any single element of the grid. This security is strengthened by the application of the N-k principle according to which the simultaneous loss of several elements that is likely and stressful enough to be taken into account does not endanger the operation of the system. This process is performed in three consecutive steps:

- Identification of events to be covered
- Assessment of their consequences
- Identification of necessary remedial actions

SO GL provide rules on how to perform those three steps. This methodology extends them by providing harmonisation for the following principles:

- Definition of the type of contingency that will be monitored and the system secured against, covered articles 6 to 10;
- Definition of acceptable consequences in term of material limits or energy not supplied, covered by articles 11 to 12;
- Application and when needed coordination of remedial actions, covered by articles 13 to 20.

The overall process can be summarized as follows:

“In addition to the Ordinary Contingencies, each TSO shall define Exceptional Contingencies fulfilling either a set of criteria based on occurrence increasing factors expressing an increase of the probability of such event or having an impact deemed unacceptable and for which the contingencies will have to be covered and will be part of the contingency list.

Each TSO will assess the impact of all events of the contingency list based on simulation.

For each contingency in the Contingency list, each TSO shall accept no violations of the Operational Security Limits or, in case of violation of Operational Security Limits, the result of the loss of the concerned grid elements shall

- Not lead to violations of the Operational Security limits outside the Control area of the concerned TSO or outside any extension of this control area resulting from multilateral agreement with neighbouring TSOs on “Controlled area accepted consequences”; and
- Respect the national obligations in term of acceptable local consequences.
When necessary, each TSO will have to prepare and implement in due time preventive and/or curative remedial actions in coordination with other TSOs when required.” These principles are illustrated by the diagram shown in Figure 8. Each step of this process will be further discussed in the following sub-chapters.

![Diagram](image-url)
4.3 Assessment of consequences

Consequences of the occurrence of a contingency on the electrical system, and as a result the consequences criteria are examined in this chapter regarding the following dimensions:

1. Material and operating limits;
2. Extent of consequences (local or not);

Activation of remedial action ex-ante versus ex-post the occurrence of a contingency and coordination of such remedial action when relevant will be discussed in another chapter.

Material and Operating Limits

Operational security limits are defined by TSOs to protect the people at the vicinity of the materials (near conductors), to protect the material integrity by respecting their technical limits or to respect contract commitments.

According to Article 25 of SO GLs, operational security limits are specified by TSOs for each element of their transmission system taking into account voltage limits, short-circuit current limits and current limits in terms of thermal rating including the transitory admissible overloads where allowed.

According to Article 35 of SO GLs, each TSO has to respect the N-1 criterion, meaning that no violation of operational security limit of any element shall occur following any contingency of his contingency list. TSOs may derogate to the N-1 criterion if the consequences do not propagate to the whole interconnected system.

Evolving contingency

After the occurrence of a contingency, the application of remedial actions may not suffice to solve every operational security limits violation. For safety reasons, grid elements or users in violation of their operational security limits have to be considered as disconnected also. This disconnection phenomenon may result from protection activation or action by an operator. Such events are called evolving contingencies and are said to be verifiable if each and every step can be simulated until a stable state is reached. Obviously, as SO GL Article 35(1) requires TSOs to assess that operational security limits are respected in the (N-1) situation, an evolving contingency which is not verifiable is unacceptable.

To assess that a contingency is a verifiable evolving contingency, a TSO may for example perform the following iterative process:

- Perform a computer based simulation of the contingency
- If operational security limits are violated apply remedial actions
- If those remedial actions are not sufficient or are deemed not efficient, simulate the tripping of the elements or users whose operational security limits.
- Repeat from point 2 until a stable state is reached.

If no stable state is reached or if the (N-1) situation can no longer be simulated, the contingency is not deemed a verifiable evolving contingency.

Figure 9 shows an example of evolving contingency in which a contingency of line A leads to overloads on line B and C. With remedial actions (topology for an example) applied either in preventive or curative way, the overload on line B is solved but not the one on line C. The tripping of line C leads to a power loss limited to the grey area.
Impact Analysis & Acceptable consequences

CSAM Provides in article 13 that the consequences of a contingency occurring in a TSO’s control area are acceptable as long as they are regarded as local, meaning that they do not impact the Operational Security of the interconnected transmission system. This local extension means that they may be either restricted to the TSO where the contingency took place or spread over one or more other TSO’s control area. In the latter case, affected TSOs must jointly agree on this possibility of extension.

As conservative approach, which is the basis of SO GL, the system is considered secure as long as no contingency for the contingency list leads to operational limits violation. This may not be the most technically and economically efficient way to handle some particular contingencies as a little chance of power cut may be preferred to a costly certain remedial action activation.

For this reason, CSAM introduces in article 11 the possibility that TSOs may, if national legislation or national rules allows it, accept operational limits violation if the evolving contingency is verifiable, meaning that the consequences of the tripping of the elements violating their operational limits are restricted to a known perimeter, and if all affected TSOs agree on it.

In addition, as frequency is not identified by SO GL Article 25 as a physical characteristic on which TSOs have to define operational security limits since they are defined at synchronous area level, CSAM makes explicit that the consequences of a contingency monitored by TSOs must not result in a power deviation between generation and demand higher than the reference incident.

4.4 Identification of contingencies

Classification of Contingencies

A “contingency” means the possible or real loss of any element of the transmission system, grid element or a significant grid user, or possible or real loss of any element of the distribution system which is relevant for the transmission system's operational security. This loss cannot be predicted in advance (in that sense, a scheduled outage is not a contingency).
SO GLs define 3 types of Contingencies:

- Ordinary contingency means the occurrence of a contingency of a single branch or injection;
- Exceptional contingency means the simultaneous occurrence of multiple contingencies with a common cause;
- Out-of-range contingency means the simultaneous occurrence of multiple contingencies without a common cause, or a loss of power generating modules with a total lost capacity exceeding the reference incident.

Based on those definitions, CSAM Article 6 provides the following classification of contingencies as shown in Figure 10.

Any other type of contingency resulting from the simultaneous loss of one or several grid users/elements not listed above shall be classified in one of the three categories (ordinary, exceptional or out-of-range) according to the SO GLs’ definitions.
Contingencies probability

Through their definitions, there is no explicit link between these types and their probability of occurrence. However, this probability level is an underlying element which has been taken into consideration when these types have been defined. In that sense,

1. Ordinary contingencies have a rather high probability so that they will always have to be monitored and covered, independently from any occurrence increasing factors;
2. Exceptional contingencies have a probability depending on the specific factors that may increase the occurrence of a “common cause” so that these contingencies will be considered according to the presence or absence of these occurrence increasing factors and/or, independently of their probability, because of consequences high enough to balance the cost of necessary remedial actions;
3. Out-of-range contingencies have such a low probability that they will never be monitored or covered, even considering the impact of occurrence increasing factors.

According to the SO GLs, Exceptional Contingencies consist of multiple contingencies with common cause. The common cause refers to a structural dependency of the contingencies which makes the probability of simultaneous occurrence of these contingencies highly dependent on occurrence increasing factors such as permanent or temporary conditions like the environment, the inherent performance of the equipment, maintenance assessment,…These occurrence increasing factors can have a big or a small occurrence increasing on the probability, so that if some marginally alter this probability, other factors have a significant effect on this probability. "Significant" means that they lead to such an increase of the probability of occurrence that it shall change the way the concerned multiple contingency will be managed during the risk assessment.

Two type of occurrence increasing factors are introduced whether they are time dependent (temporary) or not (permanent) and some examples are provided below.

1. Permanent occurrence increasing factors:
 a. Specific geographical location⁸, as examples
 i. Lines built in mountains where the profile of the landscape and instability of the ground may increase risk of tower incident;
 ii. Lines or substations built close to the sea where the salt level in the air might increase the risk of equipment damages;
 iii. Line or substation built in very dry or desert area where temperature and sand storm might increase the risk of equipment damages.
 b. design conditions;
 i. design choices of substations like outdoor or indoor substation, air or SF6 isolated substation, might change the probability of occurrence of the fault;
 ii. activation of Special Protection Scheme, which by definition will cause sudden disconnection of multiple grid elements.

⁸The initial design of the equipment generally takes into account these specific conditions. Nevertheless, during its whole life, those conditions can evolve or the design can appear insufficient with consideration of the actual conditions of the specific location.
2. Temporary occurrence increasing factors, as example:
 a. Operational conditions
 i. Depending on the substation design choices, the probability of a busbar fault may be increased during maintenance period;
 ii. Depending on the design choices, the probability of a multiple cable fault in same trench or multiple lines fault on same tower may be increased during work in the vicinity;
 b. Weather conditions,
 i. Depending on design and technical choices, loss of multiple lines due to tower incident or busbar fault may be increased during severe weather conditions.
 c. Life time or generic malfunction affecting risk of failure
 i. Aging material are subject to decreasing reliability which can increase probability of failure until replacement;
 ii. Generic malfunction can affect material which thus proves less reliable than expected.

These examples are not exhaustive and illustrate that the conditions of application of each of these criteria are strongly depending on the design choices and technical specifications which are and have been done when developing the grid. They will have to be addressed individually by each TSO for his grid as required by CSAM Article 7.

Impact of contingencies
In addition to previous criteria related to the probability, it is also possible to consider criteria related to the impact. Impact means consequences but also remedial actions to cover them. Indeed, some exceptional contingencies, even with a low probability, due to the historical grid design choices or design constraints (e.g. geographical or environmental constraints leading to a structurally weak system, such as long lines or not enough meshed) may have a high impact, over the level of the local consequences which are considered as acceptable by TSO’s national rules. Such a situation can lead the TSO as required by CSAM Article 9(1.d) to take into account these contingencies in order to avoid this kind of unacceptable consequences. However, such consequences should only be covered if the cost of necessary remedial actions is deemed proportionate to the risk.

In addition, exceptional contingencies may also lead to cross border high impact and should thus be taken into account and coordinated at inter-TSO level. In this case, CSAM Article 8 provides that affected TSOs may agree on exceptional contingencies to be included in their contingency list provided that they agree on the contingencies to cover and the maximum cost of remedial actions to cover them while ensuring that all affected TSOs are part of the agreement. TSO shall have to apply the following process to establish such agreements:

- TSO A identifies an exceptional contingency with high cross-border impact either because it is located in its control area and has consequences in TSO B’s control area or because it is located in TSO B’s control area and has consequences in TSO A’s control area.
- TSO A and B identify all the other TSOs affected by this contingency either because the contingency itself has consequences for those TSOs or because the remedial actions required to cover this contingency are cross-border impacting for those TSOs.
TSO A, TSO B and all the other affected TSOs agree on the maximum cost of remedial actions above which cost of fulfilment of operational security limits shall not be deemed proportionate to the risk.

However, some ordinary contingencies, even with a high probability, due to the historical grid design choices, shall never have consequences which are considered as unacceptable in respect with TSO’s national rules. In such situation CSAM Article 9(4) provides that the TSO, in order to reduce computation time and simplify the analysis of the results, may decide not to take into account these contingencies in his contingency list (examples: loss of small grid users, small reactors, small capacitors...) provided those contingencies are not part of the contingency list of another TSO.

Exchange of information with neighbouring TSOs

It is also of the upmost importance that TSOs inform in due time all electrically neighbouring TSOs (as defined in the Influence chapter) about changes in the contingency list which concern grid elements being part of the observability area of those TSOs. This information shall allow those TSOs assessing whether or not these new or updated contingencies shall be part or not of their external contingency list of these TSOs. The process for ordinary contingencies is described in chapter 3. However, the identification of external exceptional contingencies requires a TSO to be informed by its electric neighbours of the exceptional contingencies that they identified in application of the probability criteria. Some exceptional contingency may be covered only when operational conditions are met (e.g. weather conditions). In this case TSOs may be informed by a neighbouring TSO that it covers an exceptional contingency with short notice and have little time to assess whether they should also cover it. That’s why CSAM provides a two-step process for sharing potential exceptional contingency lists:

1. In advance, TSOs share their potential exceptional contingencies to identify if they may endanger their grid.
2. Then, when operational conditions are met and an electrically neighbouring TSO covers an exceptional contingency, TSOs cover them if they have been identified previously as being able to endanger their grid.

Of course, for permanently covered exceptional contingencies there is only one step: TSOs share their permanent exceptional contingencies to identify if they may endanger their grid and if so, cover them.

There is no need for a process to share exceptional contingencies with high impact since they are jointly identified.

4.5 Remedial actions to coordinate

Timescale for the implementation of remedial actions

During operational planning processes (from year-ahead to close to real-time security analyses are performed with the respective grid model. In case some (N-1) violations are detected, the responsible TSO(s) has/have to prepare remedial actions to ensure security of supply for the real-time situation. In case the TSO(s) might not be able to prepare and activate this remedial action in a timely manner after a contingency occurs to prevent any limit violations in the system - e.g. long lead times for re-dispatch of power plants – remedial actions have to be activated prior to the investigated timeframe for compliance with the (N-1) criterion. Those remedial actions are defined by CSAM as Preventive Remedial Actions (PRA) and are planned binding once agreed - unless not otherwise agreed later - but are ordered as close as possible to real-time (Art 21. 2. b) SO GL. In case the permanent
admissible transmission loading (PATL) of equipment is violated but not the transitory admissible transmission loading (TATL), there might exist a timeframe of several minutes within which the TSO(s) is/are able to prepare and activate a remedial action in a timely manner - e.g. change of PST settings, manually or automatically - to prevent any limit violations in the system. Those remedial actions are defined by CSAM as Curative Remedial Actions (CRA) and are activated straight subsequent to the occurrence of the respective contingency for compliance with the (N-1) criterion. After the occurrence of a contingency there should be no limit violations in the transmission system, because the TSO(s) has/have to comply with the (N-1) criterion and has/have activated either preventive or curative remedial actions. Nevertheless, after such an occurrence, the transmission system may be now in ‘alert state’, means a system state in which the system is within operational security limits, but it exists at least one other contingency from the contingency list for which, in case of its occurrence the available remedial actions would not be sufficient to prevent operational security limit violations. Therefore, the transmission system is no longer (n-1) secure. Also, an unforeseen change in the electrical situation through, for example, forecast deviations, can lead to (n-1) violations without any occurrence of a contingency. TSO(s) shall activate now a remedial action in order to ensure that the transmission system is restored to a normal state as soon as possible and that this (N-1) situation becomes the new N-Situation (Art. 35 SO GL). Those remedial actions are Restoring Remedial Actions (RRA).

Identification of remedial actions to coordinate
Due to the system physics, any action applied by a TSO on its control area will theoretically influence voltage and flows of the whole synchronous area. Fortunately, in most situations, the effects of those actions are restricted to a small perimeter outside of which their effects remain below the level of natural stochastic variations of the system. However, such a perimeter of measurable effects may comprise grid elements from another TSO’s control area. When the system is operated close to its limits, in absence of coordination between TSOs, an action applied in one TSO’s control area may have an unforeseen and negative impact in another TSO’s control area that may lead to global consequences. TSOs must therefore identify which remedial actions require coordination before being implemented.

The following Figure 11 shows the simplest case of cross-border impact: to solve a constraint on an element from its control area, TSO A needs to apply a remedial action located in its control area that has a high influence on an element from TSO B control area. The application of such a RA has to be coordinated between TSO A and B. TSO C has not such influenced element in its control area and shall not be involved in the coordination of the application of this RA.
The cross-border impact of a remedial action is not the same thing that the character of cross-border relevance of a congestion. Indeed, a remedial action (e.g. a PST tap change) considered by one TSO for solving an internal congestion, due to internal flows only, may have cross-border influence on other TSOs control areas. On another hand, a congestion on a grid element of this TSO, due to cross-border flows (loop-flows, transit or export flows) is a cross-border congestion, but in some cases, this congestion can be removed by a remedial action within this TSO control area, without any impact on flows on other grid elements outside its control area. This remedial action will not be a cross-border impacting one, but, if costly, will clearly be subject to cost-sharing agreement, as it solves a cross-border congestion.

Note that the definition of processes to identify coordinated remedial actions aimed at solving a cross-border congestion, more detailed than existing requirements set out in SO GL is out of the scope of the CSAM and is to be dealt with in regional agreements (SO GL Article 76 and CACM Article 35). The same for cost sharing of costly remedial actions (SO GL Article 76 and CACM Article 74).

Determination of cross-border impact

Regional operational security coordination and thus coordination of remedial actions will be performed in accordance with methodologies developed in application of SO GL Article 76. CSAM Article 14 provides requirements for identifying which remedial actions a TSO considers that need to be coordinated. This is done in two steps:

- Determine which remedial actions should be or should not be coordinated
- For the other remedial actions, provide ways to determine if they should be or should not be coordinated.

Cross border impact of remedial actions may be assessed by quantitative or qualitative assessments. Qualitative assessments are simpler but remains mainly empiric and it seems not always feasible to justify a good trade-off between cross-border impacting and non-cross-border impacting RAs resulting from the only application of qualitative criteria. Quantitative assessments aim at assessing the actual influence as a change on flow and/or voltage on grid elements from other TSOs control areas resulting from the application of the investigated remedial action. To be consistent with the Influence chapter, such quantitative assessment shall be performed.
1. On the N and (N-1) situations for preventive remedial actions
2. On the (N-1) situations for which they are considered for curative remedial actions

By default, CSAM provides a formula in Article 14(1) and a threshold in Article 14(6) for TSOs to assess the influence and thus the cross-border impact of a remedial action. This formula assesses the change of flows, and as an option of voltage, resulting from the application of a remedial action. As such, a remedial action that does not change the set point of an HVDC system connection two synchronous areas has no influence on another synchronous area.

Remedial actions coordination

Cross-border impacting remedial actions shall be subject to coordination having in mind that

- The higher the number of cross-border impacting remedial action is, the more complex will the coordination process be,
- If there were no coordination at all, TSOs would have to apply increased security margins to avoid that non-coordinated remedial actions implemented by other TSOs endanger their grid.

Therefore, CSAM Article 16 provides that:

- Preventive and Curative Remedial Actions that are deemed cross-border impacting have to be coordinated
- Restoring Remedial Actions that are deemed cross-border impacting have to be coordinated when the system is in alert state
- Restoring Remedial Actions that are deemed cross-border impacting have to be coordinated only when operational conditions allow it when the system is in emergency state

This approach allows to adapt the coordination to the criticality of the situation: as long as the system remains in normal state or alert state, only the occurrence of a contingency may endanger the grid whereas when the system is in emergency state remedial actions may have to be implemented quickly to prevent the system from collapsing.
5. Uncertainties

5.1 Introduction

Coordinated operational security analyses deal with the identification of risks on the interconnected system of operational security limits violations, trying to find the appropriate remedial actions, according to SO GL Article 21, and ensuring the coordination of these remedial actions. According to SO GL, these analyses are done on a common grid model in the operational planning phase. Uncertainties may have a visible effect on these coordinated operational security analyses, since in some cases operational security limits violations, which were not previously identified may arise in real time, or remedial actions prior agreed may not be enough or on the contrary may not be necessary any more. This methodology handles uncertainties in order to reduce these undesirable effects.

5.2 Uncertainties: what are they, what is their impact on operational security analysis?

TSOs must face different sources of uncertainties that affect coordinated operational security analysis results: uncertainties regarding injection that can appear in the demand or in the generation, uncertainties related to the market and finally other uncertainties such as the forced outages, effective topology, dynamic line ratings, values decided based on weather conditions, etc.

Generation
Uncertainties related to renewable generation have an impact on coordinated operational security analyses, the greater when insufficiently forecasted. This kind of intermittent generation depends heavily on weather conditions so the output generation is highly variable and can originate very diverse scenarios. In this sense, the great challenge for renewable energy forecast is precisely predicting sudden changes in power generation, since an unforeseen ramp-down or ramp-up in renewable generation can become a challenging difficulty to cope with for the system. Since installed renewable generation is increasing in almost all countries, the effect of this kind of uncertainties is becoming more and more relevant.

Time horizon has a significant influence in these uncertainties since the forecast error is drastically reduced for the first hours. There is also an important influence of the area size analysed, since this generation depends heavily on weather conditions, forecast error increases for small areas while when aggregating a whole country production, the forecast error decreases significantly.

Demand
Demand vary significantly from one moment to another, nevertheless daily, weekly and seasonally patterns can be established. Even though these patterns can be forecasted, there are also other factors that can influence demand such as weather conditions consequently any error in weather forecast will be transferred to demand forecast; other factors like particular events (holidays, strikes...) equally affect these patterns. There is also a source of uncertainties in the reactive part of demand due to high variability of reactive load and effects of DSO compensation procedures. Nodal allocation of load on nodes represented in the data model, resulting of an aggregation process also generate active and reactive uncertainties. Whereas reactive power uncertainties can be quite significant, their main impact is local, therefore it is not covered in this methodology.
Although load has been a traditional source of uncertainty in the past, nowadays load forecasting is considerably more accurate as a result of TSO’s experience and also recurring and predictable patterns in load profiles. Uncertainty levels nevertheless increase significantly with the time horizon, notably for areas with high dependency of load on weather conditions. Load forecast accuracy is significantly better at aggregated level (region, country) than at nodal level. In the future, load forecasting is expected to become more difficult because of the volatility which will be introduced by emerging paradigms, such as demand response growth, EV charging etc. They are not captured in the current version of CSAM.

Market uncertainties
A source of uncertainty can be identified for horizons greater than the difference between real time and last intraday gate, since market participants try to reduce their expected imbalance or maximize their profit by playing on the intra-day markets (cross-border or internally), making the schedules of dispatchable generation more difficult to predict the day ahead or in intraday far from the real time.

Other uncertainties
Another source of uncertainties are incidents that can occur in the transmission grid such as the tripping of elements: lines, double circuits or busbars. These events cause unforeseen changes in the topology of the network which will affect the results of the security analysis. Finally, as coordinated security analyses are run on common grid model, built in day-ahead or intraday for short-terms studies, it is also essential that TSOs avoid any additional uncertainties on the results which happen because of mistakes in the individual grid models used to build CGMs, e.g. on preferred topology, planned outages inclusion, inclusion of already agreed preventive remedial actions…

5.3 Objectives of security analyses
In the operational planning phase, security analyses are run in order to:
- Identify the capability of realizing the simultaneous planned unavailability of assets, including design of remedial actions to facilitate them
- Evaluate the expected capability of the system to respect the operational security limits in the N situation or after the simulation of one contingency of the contingency list, including design of remedial actions needed to remove identified constraints

Those studies are run in two main timeframes, long-term typically from year-ahead to week-ahead (potentially up to D-2) and short term from day-ahead towards intraday. The methodology focuses on the conditions required to realize those coordinated security analyses, in addition to requirements provided in SO GL. Coordinated SA are needed as soon as impacts on the interconnected system are evaluated. According to SO GL, those coordinated security analyses can be run by a TSO or by an RSC (on a regional perspective). In all cases, they shall be done on a CGM and RA shall be coordinated where they have cross-border impacts.

In the long-term, TSOs face a lot of uncertainties (e.g. no market position; no forecast of weather-dependant RES; weather impact on long-term trends such as hydro generation level; unplanned long-lasting forced outages…). Hence, they assess the system security on the basis of scenarios, either representative of average situations or of more severe ones. Although the uncertainties are relatively high, those studies are necessary to ensure needed long-term processes (outage planning, long-term...
capacity calculations) or prepare in advance measures to face expected risks. In general, in such a long-term, RAs are assessed as needed (e.g. choice of a given topology) but they are not yet decided definitively.

In the short term, the degree of uncertainty tends to decrease, e.g. RES inputs can be forecasted, load forecasts are quite accurate, generation location and level is available through scheduling processes, … Nevertheless, at a given time ahead of real-time, a level of uncertainty always remains, notably the effects of forthcoming intraday market activities, forecast errors, forced outages...

The objective of coordinated security analyses in the short-term is to assess the security of the system on the coming hours of the day (ideally continuously, in practice on e.g. hourly timestamps) more and more precisely, to fine tune the need for RA and their design, including coordination, and to decide their application at the latest taking into consideration their needed implementation time. This means that security shall be reassessed sufficiently frequently, or when a special event triggers the need for a reassessment. In terms of regular updates of the security assessment, there is no uniform answer across Europe either in terms of frequency or of most adequate timings. This depends on multiple issues such as intra-day market activity, RES impact on flows, RES and load forecast accuracy, time needed to activate remedial actions.

In the short-term period, agreed RAs are implemented the closest to the real time, taking into consideration the delay to implement them (which can be up to 24 -48 hours for some plant start-up). As these decisions are taken based on data affected by uncertainties, an appropriate balance must be adopted between:

• Using conservative margins to avoid any risk of not-anticipated constraint, at the cost of increasing the number and costs of needed RAs; this is specially impacting when the kind of constraint requests the use of costly RAs on generation to be implemented long before real time –due to 24-48 hours delay- where uncertainty levels are still relatively high. Moreover, as this kind of conservative decision can be judged in real-time finally not necessary, if this happens regularly, this can lead to a loss of confidence in the studies and decisions made in the operational planning phase;

• Using less conservative margins with the risk of facing constraints identified only closer to real-time with limited available remedial actions solutions (due to the fact that some are no more available), ultimately leading to the risk of N-1 security violation.

5.4 Managing Uncertainties

As described previously, the handling of uncertainties is an issue for TSOs to address, and is a challenge to be managed in processes in all timeframes of operational planning. This is indeed a wider question as it also concerns work areas such as network planning, asset management, and market design.

Based on varying conditions and area of application, various strategies for addressing uncertainties have been developed. Below follows a description of the strategies considered as possibilities to address the requirements for assessing and dealing with uncertainties, notably of generation and load in the context of SO GL:

Use more stressed values than the forecast
This approach consists in replacing the expected value (or reference value such as the average) by another one which allows one to stress the system and therefore will prevent missing the detection of unsecure situations resulting from underestimation of injections. General advantages with this method are related to providing more secure results and ease of implementation for analyses whilst the challenges relate to preparing scenarios combining different stresses and the interpretation of results, notably with respect to the decreasing probability of the more stressed values. A further risk with such an approach is that it may lead to increased volumes of remedial actions to be activated which after the fact may prove to have been unnecessary.

Use margins on results

This approach, in general, consists of keeping a margin when evaluating the results of the security analysis in order to secure the evaluation against effects of uncertainties. A simple method is to evaluate the violations of operational security limits by applying a constant security parameter on those limits: for example, checking computed flows against PATL or TATL reduced by 5%, or applying a statistically calculated margin per branch. The advantage with an approach using margins is that an approach can be developed to be similar in application and interpretation as reliability margin in capacity calculation. The disadvantages are related to the complexity and data requirements for the statistical analysis as well as the fact that the intuitiveness of results may not be compatible with operational processes for short term studies. A further disadvantage is that the approach may, as with using “stressed values” lead to an increase of volumes of remedial actions to be activated, which after the fact may prove to have been unnecessary.

Examine sensitivity of results

This approach is based on a full probabilistic description of input variables and possible events to evaluate the probabilistic expectation of N-1 violations or alert/emergency state. Such a method may be advantageous as results showing which contingencies have the highest probability to cause violations can be displayed and which could be made even more useful, if combined with severity index, as a tool for decision making in preparing remedial actions. However, such a probabilistic approach is not in line with the current dominance of deterministic methods, and therefore there is also a lack of tools, data and understanding for such an approach to be implemented by all TSOs in the medium term of several years.

Use “best forecast” values combined with update requirements.

The “best forecast” values method consists of the utilization of the best available forecast value for the injections. It is the classical method, mostly used by all TSOs. The best forecast value is either the result of a forecast model (mainly for day-ahead or intraday studies) or is a fixed value, normally equal to the average value for the studied day. In order to properly manage the effects of uncertainties of generation and load using best forecasts it is important that the forecasts are updated at a sufficient frequency to make sure that changes in the forecast that may affect the results of security analysis is captured. The advantages of a “best forecast” approach are that it is a well-known and proven approach and that the results are suited for process constraints and are sufficiently simple and intuitive to be easily analyzed in short term studies. The disadvantages of such an approach are obviously related to the accuracy of forecasts and this approach is therefore not suitable for
timeframes longer than D-1 or D-2. Such an approach obviously is less robust than other approaches which consider margins or more stressed situations, but therein also lies the advantage that it seems reasonable that remedial actions are only set up when operational security violations are identified based on best available forecasts.

It is worth noting that only the last two approaches (probabilistic and “best forecast”) are not introducing a “risk aversion” bias.

Suggested approaches

As the requirements in SO GL is focused on operational planning from year ahead to real time operation it is important to mention that, in addition to achieving a balance between being too conservative or risking security violations as mentioned in the section Roles and organisation of security analysis in operational planning, choosing of a strategy for assessing and dealing with uncertainties of generation and load must necessarily consider the following aspects:

i. what are the current/expected operational process/es
ii. capabilities of existing tools
iii. availability of data required
iv. timeframes in which processes must be completed
v. the need for operators to make decisions based on the results and therefore the intuitiveness of the results, including their appropriateness a posteriori, which drives the confidence put by operators in the decisions made in the operational planning phase.

Choice for Long Term studies

The suggested approach for long term studies is that the scenarios which shall be used as a basis for the long-term security analysis studies, described in Article 72(1)(a) or (b) or Articles 98(3), 100(3) and (4), for long term are the scenarios required according to SO GL Art 65.

However, these scenarios can be seen as average or fixed observed values and would therefore not sufficiently cover uncertainties to allow studies such as those required for outage coordination. For example; how would three TSOs combine their needs where TSO A would require a scenario with low wind infeed to be studied to be assured that a line may be put in maintenance for a longer period of time, whilst TSO B may require to study a situation with high hydro infeed for some time during the same duration, and even TSO C needing to study a situation with high wind infeed. Extrapolating this problem to all European TSOs would of course not be a sustainable solution.

The suggestion is therefore to allow local scenarios, letting each TSO decide for which operational planning activities those local scenarios are to be considered, in addition to the common scenarios mentioned above, and shall inform the TSOs of its capacity calculation region or of its outage coordination region and the relevant RSCs about the content of those local scenarios and their usage purpose. This is similar to the existing requirement in SO GL Art 80(3)(c) for TSOs to provide the regional security coordinator with scenarios to detect and solve regional outage planning incompatibilities, but an extension. To cover these scenarios with IGMs from all TSOs and consequently CGMs could potentially results in an unmanageable number of IGMs/CGMs. Therefore, all TSOs shall not be required to create an IGM per local TSO scenario, but rather the requesting TSO should define, in coordination with other TSOs of the concerned capacity calculation region, which grid models shall be used to study these local scenarios. Furthermore, these grid models shall be derived from the common grid models established pursuant to SO GL Art 67, using appropriate substitutes or derived models where appropriate.
In this way sufficient stresses can be applied locally to ensure an acceptable level of confidence in the security analyses studies whilst maintaining coordination and commonly agreed scenarios.

Choice for short term studies

The suggested strategy in this methodology is to consolidate on the basis of proven stable solutions, namely combining using best forecasts with specific requirements on regular updates of the forecasts. Thereby the principle is to harmonize based on how frequently forecasts are established and that these forecasts shall then be used in security analysis. The reliability margin in line with Article 22 of Regulation (EU) 2015/1222 (CACM) is obviously affected by the accuracy forecasts, notably in ID timeframes. However, for security analysis, and more specifically, decision making in relation to activation of remedial actions, it is considered that the best forecast approach is preferred to an approach using margins.

The detailed requirements for forecast updates are discussed in more detail in section 5.5 For D-1 security analysis specific times are set for coordination and furthermore specific requirements are set as to the minimum number of IGM updates in the intraday timeframe, which will enable TSOs to perform a coordinated operational security analysis. TSOs are then further required to determine frequency of intraday coordination of operational security analysis, per CCR, by application of SO GL Art 76-77.

With consideration to the expected continuation of a regular increase of the impact of uncertainties, mainly those resulting of RES/load injections and of intraday internal and external trades (up to the gate closure), TSOs also believe there may be a need to develop an enhanced approach using margins when analysing the results of security analysis (and consecutive remedial action decisions) run several hours ahead of real-time. This is however not the initial suggestion but can be foreseen in future evolutions of the methodology.

Handling of specific weather risks or other exceptional not planned event

When a TSO expects exceptional situations to be faced, resulting from out-of-range contingency (e.g. destruction of several assets after a windstorm), its general behaviour is to analyse in advance what could be the consequences of such events, and coordinate with potentially concerned TSOs, either because they could be affected or because they could help to face the situation. In some cases, the time needed to come back to normal state can be long, up to several days/weeks. The requirements set up in CSAM article 24 are established to ensure a consistent approach of all TSOs in that type of situations.

5.5 Forecast updates principles

Setting a definitive target in terms of maximum error which should not be exceeded is an unachievable objective, since there is a lack of definitive basis on which it can be based., For example it cannot be simply compared to the reserves needed for facing the reference incident for generation disconnection, because this event is sudden and located in one node, additionally defining a maximum error to be compliant with could lead to difficulties since predictability of intermittent generation, and also load, is very variable in different zones of Europe depending on the instability of weather conditions; being more difficult to remain below the maximum error for certain zones. The empiric target which has been taken into account to determine forecast update requirements is to avoid that lack of adequate forecast would lead to errors due to RES greater than an order of 2-4
% of the reference load for each control area. This value is in the magnitude of observed errors on load forecast, and can be deemed as adequate, as experience shows that it can be managed by TSOs. Requirements are defined with respect to the “reference load” of each control area. This reference load in the following has been taken as the average load (total consumption energy (in MWh) in the control area divided by the number of hours in the year).

Forecast updates of intermittent generation
Requirements are different according to level of installed intermittent generation in order to maintain the level of error of 2-4% of the reference load.
As regard the types of intermittent generation subject to requirements on forecasts, the requirements concern only the intermittent generation types which are highly sensitive to rapidly changing weather conditions from one hour to another one in the same day. Slower varying level of intermittent generation (e.g. run-of river hydro) are not subject to those requirements as it is expected that their slow variations are sufficiently anticipated and compensated. This means that the following requirements apply only to wind and solar generation. It could be extended in the future if other weather sensitive technologies of intermittent generation would develop.
As regards wind or solar generation forecast, current experience shows that their forecast depends firstly on the weather forecast, those forecasts can be improved by the use of multiple tools and can be strongly improved for forecasts of several hours ahead if an estimation of actual generation is taken into account in the forecast algorithm. Due to the fact that weather forecast is updated twice a day at Pan-European level, requirements based only on weather forecast must not exceed this frequency. As forecasts can be strongly improved if real time measurements or estimation of actual generation are taken into account in the forecast algorithm, in the case of a high level of RES installed capacity estimation of actual generation is included in the requirements in those cases in which it has been verified that the use of this estimation improves forecast accuracy. It may also be the case that it is not feasible to obtain real time measurements, for example in the case of PV on roofs.
There is no requirement of forecasts updates for those TSOs with a level of intermittent generation minor than 1% of the reference load, since until this level of generation there is a non-relevant effect in transmission system from this source of energy.
TSOs for which the level of intermittent generation in their control area is “moderate” (defined from 1% until 10% of the reference load) must have at least a forecast available for each hour and established once a day. Errors in forecast for the 24 hours horizon can typically reach up to a maximum of 20% of installed capacity that could involve errors of up to 2% of the reference load.
TSOs with a “medium” level of intermittent generation installed capacity in their control area (defined from 10 to 40 % of the reference load), must have at least the forecast updated 2 times in intraday; errors in forecast for the 12 hours horizon are thus reduced and can typically reach up to a maximum of 8% of installed capacity which could involve errors of up to about 3% of the reference load.
TSOs with a “high” level of intermittent generation installed capacity in their control area (above 40 % of the reference load) must have forecast updated every hour taking into account real time measurement or at least estimation of generation provided it has been verified that the use of this estimation improves forecast accuracy.

Forecast updates of load
Requirements of load concern only active power since although reactive power uncertainties are quite significant, their main impact is local so is not covered by this methodology.
The parameter selected to determine the frequency for updating load forecast has been load’s temperature dependency. The chosen value has been a MW/ºC gradient greater than 1%, since weather forecasts is usually accurate to within +/- 2ºC, which could imply a variation of load of 2%, in line with error level established. It should be stressed that although the gradient of the load’s temperature dependency has been selected as the parameter to determine the requirement for the frequency for updating the load forecast, this value has been selected as a common criterion for all TSOs of primary importance. It is therefore still the responsibility of each TSO to include other information required to establish an accurate load forecast. Examples of other information could include: meteorological data such as cloud cover or precipitation; information from market participants such BRPs; demand side response or the price elasticity of the load.
6. RSC Coordination

This part of the supporting document deals with Art 75(1)(d) which requires all TSOs to develop "requirements on coordination and information exchange between regional security coordinators in relation to the tasks listed in Article 77(3)".

Article 77, notably its paragraph 3, requires all TSOs of each CCR to delegate to one or more RSCs the following services at regional level:

- Regional operational security coordination in accordance with Art 78
- Build of CGM in accordance with Art 79
- Regional outage coordination in accordance with Art 80
- Regional adequacy assessment in accordance with Art 81.

In a meshed system, when a RSC provides its services to the TSOs in accordance with Art 77, it can be expected that the issued proposals (and then the decisions once made by TSOs) may have adjacent effects on other TSOs served by another RSC, while there maybe also additional opportunities for the RSC to provide alternative proposals using remedial actions located within the control areas of these other TSOs.

As a result, RSCs shall provide their services with an adequate level of coordination between them. This is explicitly mentioned in each of the SO GL Articles 78 to 81. This implies also requirements on information exchange between the RSCs to support this coordination, leading to an adequate level of interoperability between them. CSAM Chapter 5 provides the corresponding pan-European requirements.

It shall be noted that when developing these requirements, TSOs have taken into account the need for a right balance between

(i) establishing pan-European requirements which provide common sets of rules absolutely needed to ensure the capability for coordination between all RSCs

(ii) leaving enough flexibility for TSOs of each CCR to determine different organisations or service features (e.g. frequency and conditions of intra-day CGM and regional security analyses updates), depending on the regional characteristics, in accordance with SO GL articles 76 and 77.

The pan-European requirements defined in CSAM cover general needs for inter-RSC coordination and specific needs as regards each of the four services.

6.1 General requirements

In order to ensure feasibility of the inter-RSC coordination, CSAM Art 26 requires the use of English for all kind of information exchange between RSCs and requires a 24/7 availability so that any request for coordination coming from one RSC can be addressed by another one. Nevertheless, taking into account that, contrary to TSCNet and Coreso, new RSCs have to be set-up in order to implement SO GL, and consequently have to progressively consolidate their operational organization, Art 26 provides that if a RSC is not able to provide 24/7 availability, a back-up solution shall be defined by the RSC and its TSOs to allow possible exchange of information at the request of other RSCs during the periods this RSC is unavailable.

As mentioned before, RSCs zones of analyse/recommendations cannot be totally independent because of the interconnection of the system (this is true even when the zones are linked by HVDC links). Thus, it is important that the RSCs and their TSOs identify precisely the part of their areas which interact, in order that they specially coordinate their work on these areas. More precisely, to ensure an efficient delivery of the services, notably regional coordinated security analysis, each

9 Indeed, this part of the CSAM has been developed by a working group consisting of TSO and RSC representatives
couple of RSCs and their TSOs are required in Art 27 to determine their “overlapping zones”, in terms of lists of network elements monitored by each RSC, contingencies simulated by each RSC and list of typical remedial actions used to solve congestions. As regards remedial actions, they have also to identify those which are qualified as “cross-regional” ones. This last notion means that such a RA, considered by one RSC to solve a congestion, may have a sufficient impact on a TSO served by the other RSC, so that this impacted TSO and its RSC shall be included in the agreement of such a RA.

6.2 Requirements linked to CGM build service

As the CGM is a fundamental input for the delivery of the 3 other services required by SO GL (as well as delivery of capacity calculation service), the highest possible level of availability for the CGMs has to be ensured via a relevant organization set up by the RSCs. It is the objective of Article 28 which aim at organizing RSCs so that they ensure an absence of interruption of the service. Note that this objective is possible, while demanding for all RSCs to implement it, because the “CGM build” service is functionally identical from one region to another one, whereas it would be difficult to set the same requirements for other services, as they can be organized differently (e.g. different tools, different timescales, different human expertise role…) and need regional expertise.

CSAM also recognizes that the quality of the IGMs provided by the TSOs is a fundamental pillar in the creation of a consistent CGM, on which other services can be delivered with a sufficient accuracy. According to SO GL Art 79(1), each RSC shall check the quality of the IGMs in order to contribute to building the CGM for each mentioned time-frame in accordance with the CGM methodology provisions. In addition, CSAM requires them to monitor the correct implementation of all the previously agreed coordinated remedial actions in the IGMs by the TSOs, because the experience shows that any mistake in this implementation is a risk of confusion and inappropriate diagnosis or decision by the affected TSOs.

6.3 Requirements linked to coordinated regional security assessment service

The coordinated regional operational security assessment process is performed at RSC level based on a regional methodology defined in the scope of application of Art 76 and 78 of SO GL, and taking into account requirements set-up in CSAM. As a result, these regional methodologies have necessarily some common features such as:

- A list of contingencies that are simulated during the process
- A list of grid elements that are monitored during the process (following CSAM Article 19)
- A list of remedial actions that are used to solve congestions during the process
- Some specific exchange modalities and timestamps during the process to share and agree on the congestions and the Remedial Actions used to solve them.

As a matter of fact, there is a need to properly coordinate these elements at an inter-RSC level to ensure that:

(a) there is no confusion on what is monitored,
(b) the results of the security analyses are shared and they can be cross-checked between RSCs for overlapping zones if needed
(c) the remedial actions proposed and agreed on do not introduce problems at the cross-regional level.

As already mentioned, point (i) is covered by CSAM Article 26. Point (ii) is covered by Article 31, requesting to exchange at least the results of security analyses on the overlapping zones and, the need for RA. Point (iii) is covered by Article 29 combined with Article 26.
At the same time, the coordination between RSCs shall aim to allow that the most effective and economically efficient remedial actions, possibly outside the covered area, are found and agreed on during the process. This latter point is particularly relevant when no RA can be found by an RSC within the control areas of the TSOs it serves. This cross-regional search of potential RA is covered by CSAM Article 30, acknowledging that such an investigation can be restricted, in the case of costly RAs, to the set of RAs which are covered by an existing cost sharing rules agreement between the concerned TSOs.

Besides these requirements developed to ensure general inter-RSC coordination, applicable at any time and triggered by one RSC towards the other ones having overlapping zones with it, CSAM identifies the need for a specific process in Day-ahead to be described. Chapter 2.1 of the supporting document provides more insights on this day-ahead process.

6.4 Requirements linked to outage planning coordination service

The Outage Planning is a coordinated process among the participating TSOs and is supported by RSCs in the scope of application of Art 80 “Regional outage coordination”. This service requires numerous recurring exchanges of information between TSOs and RSCs. As regions are not independent between them, it is necessary for RSCs to coordinate in order to facilitate identifying possible cross-regional solutions to remove an outage incompatibility for which satisfying solutions have not been found inside a region.

This objective is covered by CSAM Article 34.

6.5 Requirements linked to regional adequacy assessment service

The adequacy assessment services performed regionally are not independent from each other as the European electricity system can’t be split into fully independent regions. This requires timely exchange of information between RSCs before the regional adequacy assessment is performed by RSCs in one region. This exchange of information may also give the opportunity to get and share an overall though not detailed assessment of the risk of adequacy issue at cross-regional level before starting the necessary regional adequacy assessment.

After the regional assessments are performed, some adequacy issues detected regionally that can’t be solved into one region could be solved by another adjacent region provided enough energy/MW capacity is available in that region and transmission capacities are available between those regions. Therefore, after the regional assessment is performed, potential cross-regional remedial actions should then be exchanged and assessed between RSCs.

This objective is covered by CSAM Article 35.
7. ENTSO-E role

This part of the supporting document deals with Art 75(1)(e) which requires all TSOs to define the “role of ENTSO for Electricity in the governance of common tools, data quality rules improvement, monitoring of the methodology for coordinated operational security analysis and of the common provisions for regional operational security coordination in each capacity calculation region”.

The legal analysis is that providing a direct answer to this requirement raises questions as it is not in the scope of responsibility of the NRAs to decide upon a task given to ENTSO-E. In order to allow TSOs to fulfil their obligation of Art 75(1)(e), while providing a proposal that NRAs can approve, the CSAM requirements are addressed to TSOs, mentioning where useful that TSOs shall use ENTSO-E as a platform for their cooperation to implement the corresponding CSAM requirements.

7.1 Governance

CSAM Article 39 requests TSOs, with the support of the RSCs, to identify the needs for tools and functions of pan-European nature. Such tools should make possible the access and exchange of information between TSOs and/or between RSCs, when such an exchange is needed to prepare safe operation. These tools and functions may be operated in one or several places, by operator(s) such as RSCs, TSOs… Currently, some examples have been identified, e.g. grid model building, OPDE general services to access/retrieve/update/secure data stored in OPDE or alignment of net positions between IGMs.

In the future, extension of these needs or new needs may appear and will have to be conveniently identified and addressed, primarily at pan-European level but it may also concern a need identified at regional level, where the need is shared between several regions and characteristics and processes are common (or largely common) between these regions.

With the variety of the possible needs, it is not meaningful to provide for a unique solution as regards the governance of development and operation of such tools/functions, but it is important to orientate the satisfaction of these needs in an efficient and interoperable way, hence to avoid parallel inconsistent answers provided.

Therefore, for the identified needs, CSAM Article 39 also requires the concerned TSOs to set-up a common development of a tool or a function, i.e. the TSOs shall define how to develop and maintain it, how to finance it, shall define governance rules and agree on the conditions to operate it (e.g. selection of hosting entities).

7.2 Data quality

As regards the data quality issues for operational planning, the fundamental point is to ensure quality of the system modelling. The corresponding requirements are already embedded in CGM methodology (CGMM). This includes an advance process, with the definition of a set of rules and the monitoring of the actual quality, notably with respect to these rules.

Beyond the data quality requirements for CGM building, there is no evidence that other strong data quality requirements need to be identified explicitly, and therefore no evidence that a systematic ENTSOE-role should be determined.
It is the reason why CSAM Article 40 only requires the TSOs, when identifying common needs for functions/tools in accordance with CSAM Art 39, to also identify if those needs would need a specific data quality management process comparable to the one developed in the CGMM, and in that case to define it.

7.3 Monitoring

As regards the end of SO GL Art 75(1)(e), it can be understood that the underlying objective of such a monitoring is to identify the remaining weaknesses, if any, of the regional or pan-European coordination, in order to correct them.

This part of the requirement is worded in a very general form and could be extensively interpreted as a monitoring of all the Articles adopted in the methodology on the five main aspects developed in accordance with SO GL Art 75, together with a monitoring of all the provisions set-up by TSOs and RSCs in each CCR, in accordance with SO GL Art 76. This could lead to a complex and inefficient process of data collection and analysis with poor certainty of being able to identify effective issues/weaknesses.

Moreover, the answer provided to SO GL Art 75(1)(e) requirement shall absolutely avoid becoming redundant with implementation of SO GL Art 17(1), which requests ENTSO-E to report every year on “regional coordination assessment”, on the basis of data reported by RSCs, in accordance with SO GL Art 17(2).

As a result, Art 42 CSAM rather opts for a more comprehensive and holistic approach, which consists in requesting all TSOs, using ENTSO-E resources, to make an inquiry towards TSOs and RSCs, every three years, aiming at collecting their diagnosis about the efficiency of the coordination rules applied. This inquiry shall facilitate the establishment of conclusions regarding data quality, efficiency of processes, availability of remedial actions to solve problems in a coordinated way, existing barriers to coordination.

When designing this inquiry, TSOs will have the flexibility to proceed through a qualitative approach versus some quantitative indicators or a mix of both, and will take into account all the information provided by the annual report established in accordance with SO GL Art 17.
ANNEX: Cross-reference between SO GL requirements and CSA/RAOC methodologies

As regards the five items required to be addressed in Art 75(1), CSAM provides the following articles:

75(1)(a): Articles 3, 4, 5
75(1)(b): Articles 6, 7, 8, 9, 10, 11, 12
75(1)(c): Articles 21, 22, 23, 24, 32, 33, 36, 37, 38
75(1)(d): Articles 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
75(1)(e): Articles 39, 40, 41

There follows an exhaustive list of references to Art 75 and 84 in SO GL and how they are addressed directly or indirectly in CSAM and RAOCM.

References to Article 75

<table>
<thead>
<tr>
<th>Article / text</th>
<th>CSA Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>23(2). When preparing and activating a remedial action, including redispersing or countertrading pursuant to Articles 25 and 35 of Regulation (EU) 2015/1222, or a procedure of a TSO's system defence plan which affects other TSOs, the relevant TSO shall assess, in coordination with the TSOs concerned, the impact of such remedial action or measure within and outside of its control area, in accordance with Article 75(1), Article 76(1)(b) and Article 78(1), (2) and (4) and shall provide the TSOs concerned with the information about this impact.</td>
<td>CSAM provides requirements for Article 76 methodologies to identify 'cross-border relevant remedial actions’, i.e. those requiring coordination, and provides a quantitative influence factor and the associated threshold to be used by default.</td>
</tr>
<tr>
<td>33(1) The contingency list shall include both ordinary contingencies and exceptional contingencies identified by application of the methodology developed pursuant to Article 75.</td>
<td>CSAM provides steps for identification of exceptional contingencies associated to a high probability (existence of an occurrence increasing factor) and/or to a high impact (to be defined at TSO level or at inter-TSO level when impact is cross-border).</td>
</tr>
<tr>
<td>33(4) Each TSO shall coordinate its contingency analysis in terms of coherent contingency lists at least with the TSOs from its observability area, in accordance with the Article 75.</td>
<td>CSAM provides requirements for TSO to share their contingency list with TSOs whose observability area contains elements of this contingency list. CSAM provides requirement for TSO to include in their contingency list: -external ordinary contingencies -external exceptional contingencies that may endanger their grid.</td>
</tr>
<tr>
<td>43(1) Each TSO shall determine the observability area of the transmission-connected distribution systems which is needed for the TSO to determine the system state accurately and efficiently, based on the methodology developed in accordance with Article 75.</td>
<td>CSAM provides steps for identification of observability area both in horizontal (TSO-TSO) and vertical direction (TSO-DSO) direction.</td>
</tr>
<tr>
<td>43(2) If a TSO considers that a non-transmission-connected distribution system has a significant influence in terms of voltage, power flows or other electrical parameters for the representation of the transmission system's behaviour, such distribution system shall be defined by the TSO as being part of the observability area in accordance with Article 75.</td>
<td>CSAM provides steps for identification of observability area both in horizontal (TSO-TSO) and vertical direction (TSO-DSO), including the case of non-transmission-connected distribution system.</td>
</tr>
<tr>
<td>70(5) Each TSO shall assess the accuracy of the variables in paragraph 3 by comparing the variables with their actual values, taking into account the principles determined pursuant to Article 75(1)(c).</td>
<td>In the short term, the principle as regards Article 75(1)(c) being to use best forecast estimates in the IGM/CGM, the application of Art 70(5) by any TSO is to compare actual versus forecasted values and analyse the impact of the differences.</td>
</tr>
</tbody>
</table>
72(2) When performing a coordinated operational security analysis, the TSO shall apply the methodology adopted pursuant to Article 75.

CSAM provides requirements concerning:
- definition of contingency list
- preparation of IGMs and coordinated execution of tasks by TSOs and RSCs
- identification of cross-border or cross-regional relevance of remedial actions

75(1) (a) methods for assessing the influence of transmission system elements and SGUs located outside of a TSO's control area in order to identify those elements included in the TSO's observability area and the contingency influence thresholds above which contingencies of those elements constitute external contingencies;

General principles of the method for assessing the influence of transmission system elements and SGUs located outside of a TSO's control area are provided in the CSAM. Mathematical method itself is not part of CSAM, only the thresholds.

(b) principles for common risk assessment, covering at least, for the contingencies referred to in Article 33: (i) associated probability; (ii) transitory admissible overloads; and (iii) impact of contingencies;

CSAM provides requirements concerning:
2. Occurrence increasing factors
3. Evolving contingencies affecting one or several TSOs
4. High impact contingencies affecting one or several TSOs

CSAM also provides definitions for remedial actions depending on their implementation time (preventive, curative, restoring) and requirements for the exchange of information required to establish external contingency lists and for the identification of remedial actions requiring coordination.

(c) principles for assessing and dealing with uncertainties of generation and load, taking into account a reliability margin in line with Article 22 of Regulation (EU) 2015/1222;

CSAM provides requirements needed at pan-European level to address effects of uncertainties in the long-term and short-term timelines. In the short term, CSAM relies on proven classical approach based on best forecasts and frequency of forecast updates to be determined by TSOs at regional level. This method acknowledges the fact that reliability margins are already taken into account during capacity calculations and thus avoids adding additional not justified margins. See also cross table on Art 75(6).

(d) requirements on coordination and information exchange between regional security coordinators in relation to the tasks listed in Article 77(3);

Articles 25 to 35 provide general requirements aimed at coordination and information exchanges and specific requirements for each service provided by RSCs.

(e) role of ENTSO for Electricity in the governance of common tools, data quality rules improvement, monitoring of the methodology for coordinated operational security analysis and of the common provisions for regional operational security coordination in each capacity calculation region.

Articles 40 to 41 provide requirements defining how common tools can be identified and governance rules defined by concerned TSOs, and the process to be applied by ENTSOE to monitor the implementation of the CSA methodology and of provisions defined according to Art 76 at regional level.

75 1-2 The methods referred to in point (a) of paragraph 1 shall allow the identification of all elements of a TSO's observability area, being grid elements of other TSOs or transmission-connected DSOs, power generating modules or demand facilities. Those methods shall take into account the following transmission system elements and SGUs' characteristics: (a) connectivity status or electrical values (such as voltages, power flows, rotor angle) which significantly influence the accuracy of the results of the state estimation for the TSO's control area, above common thresholds; (b) connectivity status or electrical values (such as voltages, power flows, rotor angle) which significantly influence the accuracy of the results of the TSO's operational security analysis, above common thresholds; and (c) requirement to ensure an adequate representation of the connected elements in the TSO's observability area. 3. The values referred to in points (a) and (b) of paragraph 2 shall be determined through situations representative of the various conditions which can be expected, characterised by
References to Article 84

<table>
<thead>
<tr>
<th>75.4.</th>
<th>The methods referred to in point (a) of paragraph 1 shall allow the identification of all elements of a TSO's external contingency list with the following characteristics: (a) each element has an influence factor on electrical values, such as voltages, power flows, rotor angle, in the TSO's control area greater than common contingency influence thresholds, meaning that the outage of this element can significantly influence the results of the TSO's contingency analysis; (b) the choice of the contingency influence thresholds shall minimize the risk that the occurrence of a contingency identified in another TSO's control area and not in the TSO's external contingency list could lead to a TSO's system behaviour deemed not acceptable for any element of its internal contingency list, such as an emergency state; (c) the assessment of such a risk shall be based on situations representative of the various conditions which can be expected, characterised by variables such as generation level and pattern, exchange levels, asset outages.</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.5.</td>
<td>The principles for common risk assessment referred to in point (b) of paragraph 1 shall set out criteria for the assessment of interconnected system security. Those criteria shall be established with reference to a harmonised level of maximum accepted risk between the different TSO's security analysis. Those principles shall refer to: (a) the consistency in the definition of exceptional contingencies; (b) the evaluation of the probability and impact of exceptional contingencies; and (c) the consideration of exceptional contingencies in a TSO's contingency list when their probability exceeds a common threshold.</td>
</tr>
<tr>
<td>75.6.</td>
<td>The principles for assessing and dealing with uncertainties referred to in point (c) of paragraph 1 shall provide for keeping the impact of the uncertainties generation or demand below an acceptable and harmonised maximum level for each TSO's operational security analysis. Those principles shall set out: (a) harmonised conditions where one TSO shall update its operational security analysis. The conditions shall take into account relevant aspects such as the time horizon of the generation and demand forecasts, the level of change of forecasted values within the TSO's control area or within the control area of other TSOs, location of generation and demand, the previous results of its operational security analysis; and (b) minimum frequency of generation and demand forecast updates, depending on their variability and the installed capacity of non-dispatchable generation.</td>
</tr>
<tr>
<td>76(1)</td>
<td>The proposal shall respect the methodologies for coordinating operational security analysis developed in accordance with Article 75(1)</td>
</tr>
<tr>
<td>78(1)(a)</td>
<td>Each TSO shall provide the regional security coordinator with all the information and data required to perform the coordinated regional operational security assessment, including at least: (a) the updated contingency list, established according to the criteria defined in the methodology for coordinating operational security analysis adopted in accordance with Article 75(1);</td>
</tr>
</tbody>
</table>

| General principles of the method for assessing the influence of transmission system elements and SGUs located outside of a TSO's control area are provided in the CSAM. Furthermore, CSAM provides steps (process) with qualitative/quantitative aspects for identification of contingency list. |
| CSAM provides requirements concerning 1. Common definition of types of exceptional contingencies 2. Common definition of occurrence increasing factors 3. The inclusion of an exceptional contingency in the contingency list as soon as one occurrence increasing factor is higher than the associated application criteria. |
| In long term, CSAM basis for uncertainties management is the possibility for TSOs to add local scenarios to the common scenarios defined pursuant to SOGL Art 65. In the short-term, CSAM Art 23 requires TSOs to identify the frequency of intraday security analyses required by their local conditions, which cover the aspects required by Art 75(6). This is complemented by the fact that TSOs at regional level have to define needed frequency of regional security assessments by RSCs, according to Art 76. CSAM Art 36-37 defines the frequency of load and RES forecast updates, depending of the level of their impact on the control area. |
| The CSAM provides the common requirements to be applied at pan-European level which are deemed necessary to ensure the global security of the interconnected system while leaving flexibility to design appropriately the TSOs proposal for regional delivery of the four services required by SOGL requested by Art 76-77 |
| CSAM Article 10 defines how a TSO shall inform other TSOs and relevant RSCs of any change in its exceptional contingency list. |
84.2 The methodology referred to in paragraph 1 shall be based on qualitative and quantitative aspects that identify the impact on a TSO's control area of the availability status of either power generating modules, demand facilities, or grid elements which are located in a transmission system or in a distribution system including a closed distribution system, and which are connected directly or indirectly to another TSO's control area and in particular on: (a) quantitative aspects based on the evaluation of changes of electrical values such as voltages, power flows, rotor angle on at least one grid element of a TSO's control area, due to the change of availability status of a potential relevant asset located in another control area. That evaluation shall take place on the basis of year-ahead common grid models; (b) thresholds on the sensitivity of the electrical values referred to in point (a), against which to assess the relevance of an asset. Those thresholds shall be harmonised at least per synchronous area; (c) capacity of potential relevant power generating modules or demand facilities to qualify as SGUs; (d) qualitative aspects such as, but not limited to, the size and proximity to the borders of a control area of potential relevant power generating modules, demand facilities or grid elements; (e) systematic relevance of all grid elements located in a transmission system or in a distribution system which connect different control areas; and (f) systematic relevance of all critical network elements. 3. The methodology developed pursuant to paragraph 1 shall be consistent with the methods for assessing the influence of transmission system elements and SGUs located outside of a TSO's control area established in accordance with Article 75(1)(a).

RAOCM provides steps for identification of Relevant Assets.

General principles of the method for assessing the influence of transmission system elements and SGUs located outside of a TSO's control area are provided in the RAOCM. Furthermore, RAOCM provides steps (process) with qualitative/quantitative aspects for identification of elements, which a TSO considers relevant for outage coordination. Furthermore, RAOCM provides process for TSOs of each CCR how to determine final Relevant Assets list and defines requirements concerning updates of Relevant Assets List.

TSOs may use dynamic studies (e.g. rotor angle evaluation, but not limited to it) in determination of relevant assets.

85.1 By 3 months after the approval of the methodology for assessing the relevance of assets for outage coordination in Article 84(1), all TSOs of each outage coordination region shall jointly assess the relevance of power generating modules and demand facilities for outage coordination on the basis of this methodology, and establish a single list, for each outage coordination region, of relevant power generating modules and relevant demand facilities.

RAOCM provides process for TSOs of each CCR how to determine Relevant Assets list. Furthermore, RAOCM also provides requirements concerning updates of Relevant Assets List.

86.1 Before 1 July of each calendar year, all TSOs of each outage coordination region shall jointly re-assess the relevance of power generating modules and demand facilities for outage coordination on the basis of the methodology developed in accordance with Article 84(1).

2. Where necessary, all TSOs of each outage coordination region shall jointly decide to update the list of relevant power generating modules and relevant demand facilities of that outage coordination region before 1 August of each calendar year.

RAOCM provides process for TSOs of each CCR how to determine Relevant Assets list. Furthermore, RAOCM also provides requirements concerning updates of Relevant Assets List.

87.1 By 3 months after the approval of the methodology for assessing the relevance of assets for outage coordination in Article 84(1), all TSOs of each outage coordination region shall jointly assess, on the basis of this methodology, the relevance for the outage coordination of grid elements located in a transmission system or in a distribution system including a closed distribution system and shall establish a single list, per outage coordination region, of relevant grid elements. 2. The list of relevant grid elements of an outage

RAOCM provides process for TSOs of each CCR how to determine Relevant Assets list. Furthermore, RAOCM also provides requirements concerning updates of Relevant Assets List.
coordination region shall contain all grid elements of a transmission system or a distribution system, including a closed distribution system located in that outage coordination region, which are identified as relevant by application of the methodology established pursuant to Article 84(1).

88.1 Before 1 July of each calendar year, all TSOs of each outage coordination region shall jointly re-assess, on the basis of the methodology established pursuant to Article 84(1), the relevance for the outage coordination of grid elements located in a transmission system or a distribution system including a closed distribution system.

2. Where necessary, all TSOs of an outage coordination region shall jointly decide to update the list of relevant grid elements of that outage coordination region before 1 August of each calendar year.

RAO CM provides process for TSOs of each RAO CM CCR how to determine Relevant Assets list. Furthermore, CSAM also provides requirements concerning updates of Relevant Assets List.