

European Network of Transmission System Operators for Electricity

TYNDP 2016 Scenario Development Report

- for public consultation -

21 May 2015

1 Contents

2	Executive Summary	3
3	Call for input	4
4	Objective of TYNDP scenarios and visions	5
	How does it fit in the overall TYNDP work?	5
	How are these scenarios developed?	6
	How is it linked to the work on adequacy forecasts?	7
	How are these scenarios linked with other available scenarios?	7
5	Main storyline for the TYNDP2016 scenarios	9
	2020 Best Estimate Scenario of "Expected Progress"	13
	2030 Vision 1 of "Slowest Progress"	15
	2030 Vision 2 of "Constrained Progress"	16
	2030 Vision 3 of "National Green Transition"	17
	2030 Vision 4 of "European Green Revolution"	18
6	Draft results	21
	2020 Best Estimate Scenario of "Expected Progress"	21
	2030 Vision 1 of "Slowest Progress"	24
	2030 Vision 2 of "Constrained Progress"	
	2030 Vision 3 of "National Green Transition"	29
	2030 Vision 4 of "European Green Revolution"	31
	General overview	
7	Methodologies to derive pan-European scenarios	37
8	Data references	42
9	Next steps in the TYNDP process	43
Aı	nnex 1 of top-down scenario building methodologies	44
	Load profile update	44
	RES re-allocation	44
	Thermal optimization	46
Aı	nnex 2 – Background tables	47

2 Executive Summary

This Scenario Development Report explores possible future situations of load and generation, interacting with the pan-European electricity system. These scenarios will be the baseline on which TYNDP2016 projects are to be assessed in the coming year.

As in the most recent TYNDP2014, also the next TYNDP will focus on the year 2030. European ambitious targets as set by the Council in October 2014 on renewables, energy efficiency, decarbonisation and interconnection targets, give a stronger direction to the studies and resulting recommendations for grid development up to 2030. It is the ambition of ENTSO-E's TYNDP to demonstrate the need and the value of grid infrastructure in this context, to inform decision makers and the general public, and to enable these targets to be met. For the long-term horizon 2030, four contrasting 'Visions' are presented which differ in terms of energy governance and RES ambitions. In addition a mid-term 2020 'best estimate scenario' is covered to allow grid infrastructure candidates to be valued at a mid-term horizon as well.

The new TYNDP2016 scenarios show a natural evolution compared to the earlier TYNDP2014 Visions, taking stock of updates in national scenarios and taking a leap forward in the construction of pan-European top-down scenarios.

The aim of this report is to provide insight in how ENTSO-E's scenarios for TYNDP are developed, highlight how infrastructure needs 'are linked to choices' in future energy policies, and to engage on these topics in a transparent manner.

The scenarios are planned to be finalized in summer 2015. At the same time also a draft list of TYNDP2016 projects will be publically available for consultation and consolidation. After summer all projects will be assessed against the scenarios, in line with ENTSO-E's CBA methodology as recently adopted by the EC.

ENTSO-E counts on your views.

3 Call for input

This Scenario Development Report shows the main approach, key assumptions and a preliminary set of midterm and long-term scenarios. ENTSO-E develops these scenarios to assess projects of pan-European significance in the TYNDP2016 process.

First workshop (16/09/14) • Call for input on the scenario storylines (main trends for demand, generation portofolio, fuel and CO2 prices...) Second workshop (11/03/2015) • Presentation of preliminary results • Discussion on the methodology to build the scenarios (specific focus on the top-down scenarios)

Third workshop/webinar (10/06/2015)

Link with adequacy forecast
Link with CBA assessments

Public Consultation (10/06/2015)

• Call for input to close the TYNDP 2016 scenarios

FIGURE 3-1 CALL FOR INPUT TO BUILD THE TYNDP 2016 SCENARIOS

These scenarios reflect one best estimate 2020 future, as well as a set of four contrasting but all possible 2030 futures. ENTSO-E asks for your input on the approach, assumptions and draft results in this consultation round. Your feedback will be used to improve these TYNDP2016 scenarios, offer appropriate context to the overall TYNDP report, and drive continuous improvement of methodologies for the next TYNDPs. This public consultation is the third step of formal interaction with Stakeholders in order to build the TYNDP2016 scenarios.

Your feedback on all aspects of the Scenario Development work are valuable. In particular we ask for your views on the following topics:

- Do the four 2030 Visions capture a realistic range of possible 2030 futures? If not, in which respect would you adapt the picture?
- Are the two main axes (see Section 5) the most important elements of differentiation? If not, which other would you propose?
- Which constraints (demand change, min/max installed capacities per technology, ...) are appropriate in a top-down scenario?
- Grid planning requires a scenario which is adequate, i.e. a scenario which shows enough generation capacity to cover the demand, an assessment of extreme cases and with a technology breakdown ensuring all generation means have a reasonably profitable business case. This has been a recurring topic of debate with stakeholders, e.g. in the Network Development Stakeholder Group. Your views on this are appreciated.
- The scenario building data takes into account best available data on cost estimations and technology improvements. Details are given throughout the text. Your views on the assumptions, or your view on which assumptions have the highest influence on specific scenario directions, are appreciated.

4 Objective of TYNDP scenarios and visions

How does it fit in the overall TYNDP work?

The ENTSO-E TYNDP report provides a comprehensive and transparent overview of projects of pan-European significance, which are all assessed against several scenarios, based on a common data set, and with a robust CBA methodology.

During 2014 and early 2015, the work was mainly focused on identifying investment needs (presented in the Regional Investment Plans 2015), and analysing at the same time new scenarios for project assessments (given in this report). Based on a consulted final list of projects and scenarios, the actual assessment work starts after summer 2015 and will be reported in a draft TYNDP report mid-2016.

The development of scenarios and the joint planning exercise performed by ENTSO-E's members run in parallel. Both continue from earlier TYNDP2014 work, and both are strongly interlinked; investment needs are driven by evolutions in generation and load patterns, while a pan-European approach on generation incentives has to take into account physical grid constraints.

The TYNDP provides four long-term scenarios ('Visions') for 2030, and one mid-term scenario for 2020.

The TYNDP 2030 Visions present contrasting scenarios that reflect similar boundary conditions and storylines for every country, and which differ enough from each other to capture a realistic range of possible future pathways. All result in different future challenges for the grids which a TYNDP grid endeavours to accommodate. The mid-term TYNDP 2020 scenario gives a best estimate for this time frame. The goal of the scenarios is to eventually allow TYNDP projects to be assessed across the same range of possible futures.

The assessment of all TYNDP projects is done based on a Cost-Benefit Analysis methodology, developed in line with Regulation (EU) 347/2013, and approved by the European Commission. The CBA approach will be used for all projects on a mid- and long-term horizon, which are presented in this report. The CBA methodology applicable for TYNDP2016 is the present approved version. Meanwhile work continues to improve the methodology for future TYNDPs.

The overall two-year process of all TYNDP activities is summarized in the following graph.

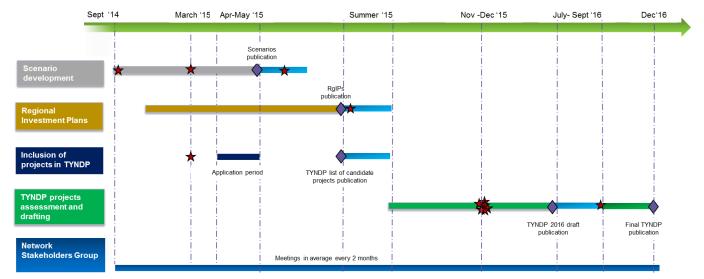
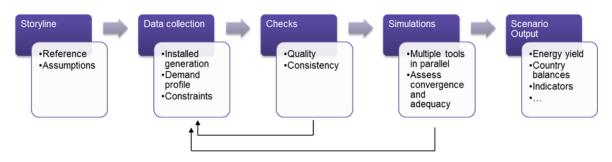



FIGURE 4-1 OVERVIEW OF THE TYNDP 2016 ROADMAP, INDICATING MAIN WORK STREAMS, CONSULTATIONS (BLUE BARS) AND PUBLIC WORKSHOPS (RED STARS).

How are these scenarios developed?

In general terms scenarios are based on a storyline, assumptions, data collections, quality checks, pan-European methodologies, and final market simulations to quantify energy outputs.

FIGURE 4-2 SCENARIO DEVELOPMENT PROCESS

A key strength of the ENTSO-E scenarios is that it combines the views of national plans provided via TSO correspondents, the expertise and large variety of tools of dozens of market modelling experts, and the pan-European perspective via elaborate scenario development methodologies. Considering a quite close time horizon (max. 15 years) ENTSO-E scenarios are not developed as starting-from-scratch based on ideal optimizations, but are strongly linked with both national development plans and pan-European coordination.

Section 5 explains the storyline on which each scenario is developed. These storylines take into account binding targets, long-term ambitions, and available technology roadmaps. Still it is important to note that the scenarios do not aspire to give a forecast of the future, nor is there any probability attached to any of the 2030 Visions. The Visions do not have the pretext to show what some would hope the future to be like, but rather give the full spectrum of what is considered realistic.

To build up relevant storylines and assumptions, and to finally test the acceptance of the set of scenarios, continuous engagement with various stakeholders, regulators, policy makers, and all TSOs is essential.

Event	Focus	Date	Material
Public workshop on Scenario Methodology for TYNDP 2016	Definition of the overall scenario framework by the mean of brainstorming in small groups	16/09/14	Presentations Inputs from Stakeholders during the workshop
Network Development Stakeholder Group meeting ¹	Discussion of the principles to find a mid-term best estimate scenario	10/03/15	Meeting minutes
Public workshop on TYNDP 2016 Scenario Development	Draft methodology to build the top- down scenarios; Draft results of scenario quantification (Visions 1 and 3, and intermediate steps of Vision 4)	11/03/15	Agenda and presentations
Public webinar on TYNDP 2016 Scenario Development	Draft results of scenario quantification (all scenarios)	10/06/15	[available on website later]

FIGURE 4-3 SUMMARY OF THE PUBLIC EVENTS ORGANIZED FOR THE TYNDP 2016 SCENARIO BUILDING

¹ <u>https://www.entsoe.eu/major-projects/ten-year-network-development-plan/long-term-network-development-stakeholder-group/Pages/default.aspx</u>

How is it linked to the work on adequacy forecasts?

Deployment of grid infrastructure requires a long planning and decision horizon (typically 10 to 15 years). Such infrastructure is central to the completion of the European Internal Electricity Market, to facilitate increased renewable energy penetration and, at the same time, ensure pan-European adequacy. The 2030 Visions of TYNDP are used as representative and exploratory scenarios regarding generation, demand and Pan-EU adequacy of possible futures within certain storylines. These storylines express the fundamental uncertainty on the evolution of the energy mix and their adequacy assumptions at a long term horizon.

For adequacy studies the uncertainties are mainly related to extreme situations such as high load related to temperature conditions, either in a present or a future power system. The most suitable time frame to assess generation adequacy at national and regional resolution, anticipating possible adequacy issues, is typically 5 years - 10 years (maximum) horizon, as recommended by the Electricity Coordination Group (ECG) – subgroup on adequacy². Within this time frame, trustable diagnoses of generation adequacy risks are possible, by use of a sound, widely accepted and transparent methodology. Scenarios for adequacy are 'predictive' and designed to inform about and assess the possible risks the Pan-European system faces regarding generation adequacy. In that sense, they are fundamentally different than the TYNDP 2030 Visions, which should be understood more as 'exploratory' scenarios without focus on extreme events as cold spells, dry years, bad wind/solar years which are extremely important in the context of adequacy assessments.

ENTSO-E is mandated to deliver a community wide grid investment plan, including a generation adequacy assessment. To clarify the different levels of uncertainty at different time horizons, ENTSO-E has restructured the former TYNDP and SO&AF reports. The next TYNDP2016 report will address the scenarios used in the TYNDP project assessments (and covered in this report), while the SO&AF report as of 2015 addresses the scenarios used for generation adequacy. A remaining key link will be the 2020 best estimate scenario, which is introduced as the mid-term horizon for TYNDP project assessments, and which is closely related to the bottom-up scenario B in SO&AF (see also the conclusions of the Network Development Stakeholder Group). In addition, also the methodological elements of the next SO&AF reports are scheduled to improve, while ENTSO-E still has the ambition to publish the report on annual basis.

How are these scenarios linked with other available scenarios?

An issue in the use of scenarios for grid development, is the ever possible confusion when comparing different development plans (in particular national versus pan-European). ACER's opinion on consistency of ten-year network development plans³ highlights the different approaches in national plans (e.g. frequency of updates, time horizon) in which main directions are most often set in perspective of national policies. As plans and scenarios continuously evolve there is a challenge to any reader when comparing a pan-European plan for 2030 published in 2016 with for example a national plan published in 2015 looking at 2025.

The results in section 6 put the draft scenarios in context of the EC trends and IEA world energy outlook. A comparison of installed generation and electrical demand may be valuable. It is worth noting the different strengths of each scenario report. On one hand pure energy-models (such as the PRIMES model used in the EC trends) allow to look forward based on an optimization of all energy components, not purely electricity but also gas and oil which all interact. On the other hand power-based models (such as the ones used by ENTSO-E in this report) are based on electricity market simulations which take into account full-year hourly based profiles of load and climate data, as well as grid constraints. Such power-based model allows to assess price zone differentials, RES spillage, country balances, etc... and are key in the methodologies which make

² "The further ahead one assesses adequacy the greater the uncertainty. There becomes a point where the uncertainty outweighs any information that might be learnt from the assessment in the first place. It appears from the forecast periods utilised that this is likely to be in the range of 5 - 10 years"

³ <u>http://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Opinions/Opinions/ACER%20Opinion%2008-2014.pdf</u>

the bridge from bottom-up scenarios to top-down scenarios. The scenarios of the gas and electricity TYNDPs (both published every two years, but in alternating years) of respectively ENTSO-G and ENTSO-E interact; gas-based generation is an essential input for gas scenarios, while risks of gas shortages are a continuous topic in electricity adequacy assessments (seasonal outlook reports and System Outlook & Adequacy Forecast). Both ENTSOs continuously explore further synergies between the two TYNDPs and their scenarios (storyline and data).

Making an explicit comparison between the 2020 and 2030 scenarios in this report and 2050 outlooks (EC trends, IEA, electricity-Highways 2050 project) can be done on a qualitative level as it based on roadmap and progress assumptions. The four 2030 Visions are on track with the recent set targets for 2030, and are such assumed to also all be on track to meet the ambitious 2050 goal of de-carbonization of the generation fleet, though at a different pace.

5 Main storyline for the TYNDP2016 scenarios

The ENTSO-E Visions encompass a broad range of possible futures that flex European integration and the achievement of the sustainability goals within the EU 2050 Roadmap. The year 2030 is used as a bridge between the European energy targets for 2020 and 2050. As it can take more than 10 years to build new grid connections, the Visions for the TYNDP 2016 look beyond 2020. However, when looking so far ahead it becomes more difficult to predict the future. Therefore, the objective of the Visions for 2030 is to construct contrasting Visions that reflect the same boundary conditions for all countries but that differ enough from each other to capture a realistic range of possible future pathways as well resulting in different future challenges for the grid. In order to keep the number of long term Visions limited, the choice was made to work around two main axes that are described later in this text and as a consequence limit the number of Visions to four. Stakeholders have engaged with the Visions more than ever and we have received strong positive feedback.

A number of stakeholders have expressed the requirement to understand more and shorter timeframes than the single 2030 view in the TYNDP 2014. To meet this requirement, for the TYNDP 2016 we are developing a new scenario to cover the time period of 2016 to 2020. This new scenario is called "Expected Progress" and covers the period to 2020. This scenario is not directly linked to the 4 2030 Visions but represents an intermediate stage. It is defined as the last point in time before uncertainties increase to a level where a broader envelope of potential futures is required.

By the time the TYNDP 2016 is published, the vast majority of investments realized in 2020 will be determined to a large extent. The potential changes in the power system with regard to transmission and transmission connected thermal generation between 2016 and 2020 are much less than for a 2030 forecast due to the relatively short time period between the two points in time compared to development times of power system infrastructure ("industry inertia"). Construction of transmission connected thermal power stations and construction of transmission lines usually takes longer than 4 years between planning and beginning of operation. Beyond 2020, the 4 Visions provide the envelope within which the future is likely to occur but strictly do not have probability of occurrence attached to them. This does not mean that there are no uncertainties attached to "Expected Progress", however it can be considered as a forecast for the year 2020 as the deviation between this scenario and the real system in 2020 should be much less than for a 2030 forecast. "Expected Progress" can serve as a starting point for the scenario envelope, which is expanded by the 4 Visions as shown below in Figure 5-1.

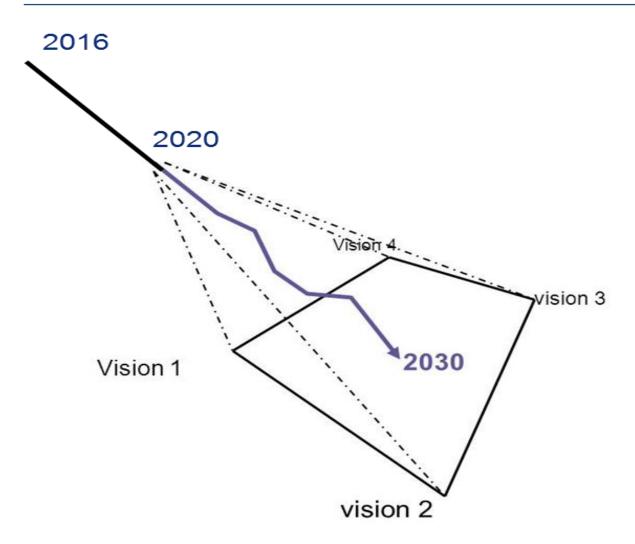


FIGURE 5-1 EXPANDED SCENARIO SPACE

To analyse the 2030 time-horizon, four visions are elaborated based on two axes. A similar approach was already applied in the visions development of TYNDP2014.

One axis is related to European ambitions and targets to reduce greenhouse gas emissions to 80-95% below 1990 levels by 2050. The axes provides a spectrum of progress, with the goal to assess the impact of progress/delay in decarbonisation of energy on grid development needs by 2030. The two selected outcomes are viewed to be extreme enough to result in very different flow patterns on the grid. The first selected outcome is a state where Europe is very well on track to realize the set objective of energy decarbonisation by 2050. The second selected outcome is a state where Europe progresses beyond 2020 targets to align with the recent 2030 targets set for renewables. It is assumed that the 27% target for renewables translates to about 40% of renewable share in electrical energy consumption⁴.

The second axis relates to perspective of measures for decarbonisation of the energy system. This can be done firstly in a strong European framework in which national policies will be more effective, but not preventing

⁴ EC, A policy framework for climate and energy in the period from 2020 to 2030 [COM(2014) 15], <u>http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0015&from=EN</u>

Member States developing the options which are most appropriate to their circumstances, or secondly in a looser European framework effectively resulting in parallel national schemes.

The Figure 5-2 shows how the four Visions relate to the two axes.

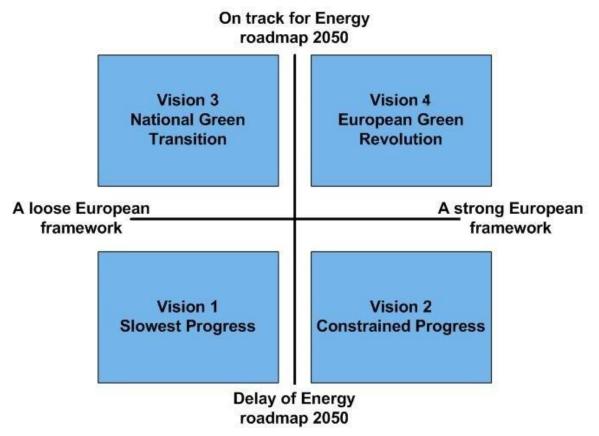


FIGURE 5-2 TWO-AXIS OVERVIEW OF THE 4 VISIONS (GENERAL)

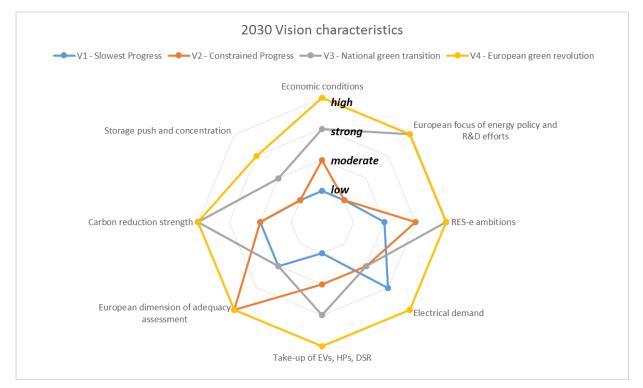


FIGURE 5-3 CHARACTERISTICS OVERVIEW OF THE 4 VISIONS (MORE DETAILED)

2020 Best Estimate Scenario of "Expected Progress"				
Overall perspective	"Expected Progress" can be described as the best estimate of development until 2020, within the following boundaries.			
Demand	Development of electricity demand is determined by diverging driving forces. On the one hand innovations lead to higher efficiencies of consumers and thus to a reduction of demand. On the other hand, innovation leads to a fuel switch of applications like electric vehicles, for example. A fuel switch towards electrification increases electric demand. Demand forecast in the "Expected Progress" scenario is the best national estimate available, under normal climatic conditions out to 2020. It is estimated according to technical and economic assumptions, especially on demography and economic growth.			
Renewable Energy Sources	Binding EU driven national targets exist for the share of renewable energy sources in the energy mix by 2020. Renewable energy sources covered in this scenario report include electricity generation from solar, wind power, run-of-river, biomass and other supply depended renewable sources. The forecast of renewable energy sources in "Expected Progress" takes into account the current supporting mechanisms for renewable energy sources in each country and the expected development of support mechanisms, if changes are under discussion. Including the cost degression, a realistic forecast for the year 2020 is derived, even if this means that the targets set by the National Renewable Energy Action Plans (NREAPs) will not be met.			
Hydro Reservoir and Pumped Storage	In contrast to run-of-river power plants, hydro reservoir stations can regulate their electricity generation as long as their reservoir holds water. The creation of a new water reservoir is an expensive project which may cause high local environmental impact. Additional hydro generation capacity is only included in this scenario if the projects are confirmed and under construction ⁵ . Pumped storage hydro stations are easier to build, if the required reservoir already exists and only the pumping machines have to be added. However, economic conditions for pumped energy storages are unfavourable, because of the absence of peak prices due to the high infeed of renewable energy sources. As such, also only confirmed pumped hydro projects are included.			
Conventional Thermal Generation	The development of conventional thermal generation follows market mechanisms. As explained before this scenarios assumes the prices for emission certificates remain low. Due to coal-gas price spread the general economic conditions are more favourable for existing coal power stations. The estimated decommissioning of power stations is based on best available information and trends to TSOs. Regarding new units, only confirmed thermal power stations are taken into account. Carbon Capture and Storage (CCS) is assumed not to be an option yet for lignite and coal power stations by 2020.			
	need at least a final investment decision today, so that their construction will be finished by 2020. As a consequence, only confirmed new nuclear power projects are taken into account in this scenario.			

⁵ This is without prejudice to hydro and pumped storage projects which have very recently be nominated for TYNDP inclusion (April 2015). Additional hydro storage projects can be included in the scenario used for project assessments.

		Power plants of the strategic reserve (as defined in some countries) are kept ready to start-up for emergency periods when secure operation of the system is at risk. They are not participating in the market. The capacity of power plants belonging to present strategic reserves have been included, but are in the market simulations distinguished from generation capacity that participates in the electricity markets. This scenario gives no specific assumptions about evolutions of strategic reserves or capacity mechanisms in the coming years.
Adequacy		"Expected Progress" should consider adequacy from a Pan-European perspective without explicitly addressing potential generation adequacy issues in some countries at present. This scenario does not assume autonomous adequacy of single countries. Still it is assumed that conventional thermal power stations do not face shortage in fuel supply, which might be different in a true generation adequacy analysis (see SO&AF report, as well as the Seasonal Outlooks).
Emission Fuel prices	and	Prices for CO2 emissions are currently low, which has an impact on the type of generation plant utilised in the electricity market. Under low CO2 prices, coal fired generation tends to be favoured over gas in the merit order. There is no indication of change in the short term of prices of emission certificates. Also natural gas prices in Europe have been relatively stable in recent years. In contrast, prices for import coal have decreased in previous years. As a consequence, based on primary fuel prices coal generation is favoured over gas generation. For the 2020 "Expected Progress" scenarios it is assumed that no major change happens in the boundary conditions for primary fuels and emission certificates.

2030 Vision 1 of "Slowest Progress"

Economy and Market	The perspective of Vision 1 is a scenario where no common European decision regarding how to reach the CO ₂ -emission reductions has been reached. Each country has its own policy and methodology for CO ₂ , RES and system adequacy. Economic conditions are unfavourable, but there is still modest economic growth. This results in a limitation on willingness to invest in either high carbon or low carbon emitting sources due to investment risks, low CO ₂ -prices and lack of aligned support measures. Consequently older power plants are kept online rather than being replaced if they are needed in order to maintain adequacy. The situation varies across countries. The absence of a strong European framework is a barrier to the introduction of fundamental new market designs that benefit from R&D developments resulting in parallel, loosely coordinated national R&D expenditure and cost inefficiencies. Carbon pricing remains at such a level that base-load electricity production based on hard coal is preferred to gas in the market.
Demand	In this Vision there are no major breakthroughs in energy efficiency developments such as large scale deployment of micro-cogeneration or heat pumps nor minimum requirements for new appliances and new buildings due to a lack of strong political and regulatory policy. There are also no major developments of the usage of electricity for transport such as large scale introduction of electric plug-in vehicles nor heating/cooling. A modest economic growth brings a modest electricity demand increase. Also demand response potential that would allow partial shifting of the daily load in response to the available supply remains largely untapped.
Generation	The future generation mix is determined by national policy schemes that are established without coordination at a European level. Due to a lack of joint framework and joint decision to reduce emissions, the generation mix in 2030, on a European level, fail to be on track for the realization of the energy roadmap 2050 and no additional policies are implemented after 2020 to stimulate the commissioning of additional RES except locally due to local subsidy schemes. Adequacy is handled on a National basis. Some countries may require complete adequacy while others may depend on neighbouring countries. Very little new thermal capacity will come online except in the case for subsidized production or adequacy required peak capacity. New CO2-emitters risk to be closed down after 2030 in order to reach the 2050 target; hence the financial risk is substantial and old units are kept online instead of replacing them. Nuclear power is a national issue. In some countries nuclear power is regarded as a clean and affordable source of electricity and new units are brought online before 2030.

2030 Vision 2 of "Constrained Progress"

Economy a Market	and	The perspective of Vision 2 is that the economic and financial conditions are more favourable compared to Vision 1 providing more room to reinforce/enhance existing energy policies. There is a strong European framework. The economic outlook facilitates new market implementations, and R&D expense focuses on cost cutting, increased energy efficiency and energy savings. On the other hand, there is a limitation on willingness to invest in either high carbon or low carbon emitting sources due to investment risks, low CO ₂ -prices and lack of aligned support measures. Carbon pricing remains at such a level that base-load electricity production based on hard coal is preferred to gas in the market.
Demand		The breakthrough in energy efficiency developments (e.g. large scale deployment of micro-cogeneration or heat pumps as well as minimum requirements for new appliances and new buildings) and the development of the usage of electricity for transport (e.g. large scale introduction of electric plug-in vehicles) and heating/cooling is driven by innovation caused by R&D expenses focused on cost cutting and energy saving. As a consequence the electricity demand is lower compared to Vision 1. Furthermore, demand response potential is partially used to shift the daily load in response to the available supply, as it allows savings in back-up capacity.
Generation		The future generation mix is driven by a strong European Vision which faces still financial challenges and construction delays due to permitting issues, combined with a halt in the implementation of additional policies needed for the realization of the energy roadmap 2050. As a consequence, lifetime extension of existing conventional thermal power plant is likely. Some additional policies are implemented after 2020 to stimulate the commissioning of additional RES, causing RES capacity to be higher than in Vision 1. Decarbonisation is only driven by carbon pricing (no additional policies are assumed if carbon prices are too low to ensure a lower usage of coal fired units).

2030 Vision 3 of "National Green Transition"

Economy Market	and	Vision 3 shows economic conditions being more favourable than in Vision 1 and 2. It results in member states having more financial means to reinforce existing energy policies. Still a loose European energy governance is a barrier to the introduction of fundamental new market designs that fully benefit from R&D developments. Furthermore, opting for parallel national schemes regarding R&D expenses also results in a situation where major technological breakthroughs suffer from suboptimal R&D spending. Energy policies drive carbon pricing (e.g. the EU Emissions Trading System, carbon taxes or carbon price floors) to levels such that baseload electricity production based on gas is preferred to hard coal. Gas prices will be higher than in Vision 2, due to low acceptance of shale gas and domestic gas. On the balance gas is likely to push out hard coal for baseload electricity generation.
Demand		Developments in energy efficiency, as well as electrification of transport and heating/cooling minimize the ecological footprint. On the balance electricity demand is lower than in Vision 1 on European level. Demand response potential is partially used to shift the daily load in response to the available supply.
Generation		The future generation mix is determined by parallel national policy schemes that are aiming for the decarbonisation objectives for 2050. Large scale RES expansion drives the price of RES electricity production to a competitive level. The cost of the electricity system will be higher than it would be for the case with a strong European framework, since RES and adequacy is handled on a national basis without cooperation between the countries. Demand response potential is used, however, the majority of the additional back-up capacity in 2030 would come from gas units since additional central hydro storage is not developed due to the lack of a strong European framework. Only some extra national storage is developed. Favourable economic conditions in combination with capacity mechanism (if needed) on a national basis result in conventional power plant investments and additional backup-capacity. Adequacy is handled on a national basis without cooperation between the countries. Old units are more likely to be decommissioned. New nuclear power plant projects become economically unattractive; only projects with a national acceptance for existing (or with final investment decision already made, or with support from existing national schemes) are included in this vision. Carbon capture and storage are not (yet) economically attractive but are developed for pilot plants and for full-size demonstration plants.

2030 Vision 4 of "European Green Revolution"

Economy Market Vision 4 sees financial conditions that are more favourable than in any of the other Visions, allowing member states to reinforce existing energy policies. Significant investments in sustainable energy generation are undertaken. Furthermore, a strong European framework makes the introduction of fundamental new market designs that fully benefit from R&D developments more likely. This also allows R&D expenses to be optimized so that major technological breakthroughs are more likely. Energy policies drive carbon pricing (e.g. the EU Emissions Trading System, carbon taxes or carbon price floors) to reach levels such that baseload electricity production based on gas is preferred to hard coal. Gas is likely to push out hard coal for baseload electricity generation.

- **Demand** Efforts in energy efficiency developments (e.g. large scale deployment of microcogeneration or heat pumps as well as minimum requirements for new appliances and new buildings) and further electrification of transport and heating/cooling are intensified. Furthermore market designs are adapted in such a way that the highest energy savings coincide with the highest energy substitution to electrical. Electrical usage still outweighs efficiency savings, giving a net energy increase. These new usages are intensified through additional national and/or European subsidies. Furthermore the demand response potential is fully used to shift the daily load in response to the available supply, because it allows a saving on back-up capacity.
- **Generation** The future generation mix is determined by a strong European Vision that is on clearly track to realize the decarbonisation objectives for 2050 at least cost. Thanks to a strong governance approach towards RES, RES is located in Europe in an optimal way lowering the cost for society. Likewise backup capacity to secure adequacy is handled on a European level. Large scale RES expansion drives the price of RES electricity production to a competitive level.

Smart metering and smart grids are fully developed and thus demand response has a strong take-up. Additional hydro storage is built in centralized manner (focusing predominantly on Scandinavia, the Alps and the Pyrenees), with the remaining additional back-up capacity in 2030 coming predominantly from gas units. In this Vision no generating technology receives specific support and technologies compete with each other purely on a market basis. Furthermore decarbonisation is driven by carbon pricing.

New nuclear power plant projects are not economically viable due competitiveness of RES production and no public acceptance for new projects. Older nuclear power plants are not considered flexible enough to balance the demand and RES and are consequently phasing out in areas with high RES production.

In order to build the four 2030 Visions matching the storylines mentioned in this section, a set of parameters was set up to describe with more details these scenarios. Based on these parameters, data were collected from TSOs for the two bottom-up 2030 Visions (Vision 1 and Vision 3).

TABLE 1 - SUMMMARY OF CHARACTERISTIC ELEMENTS OF 4 VISIONS

	Slowest progress	Constrained progress	National green transition	European green revolution
	V1	V2	V3	V4
Economic and financial conditions	Least favourable	Less favourable	More favourable	Most favourable
Focus of energy policies	National	European	National	European
Focus of R&D	National	European	National	European
CO ₂ and primary fuel prices	low CO₂ price, high fuel price	low CO₂ price, high fuel price	high CO ₂ price, low fuel price	high CO2 price, low fuel price
RES	Low national RES (>= 2020 target)	Between V1 and V3	High national RES	On track to 2050
Electricity demand	Increase (stagnation to small growth)	Decrease compared to 2020 (small growth but higher energy efficiency)	stagnation compared to 2020(Increase (growth demand)
Demand response (and smart grids)	As today	Partially used	Partially used	Fully used
	0%	5%	5%	20%
Electric vehicles	No commercial break through of electric plug-in vehicles	Electric plug-in vehicles (flexible charging)	Electric plug-in vehicles (flexible charging)	Electric plug-in vehicles (flexible charging and generating)
	0%	5%	5%	10%
Heat pumps	Minimum level	Intermediate level	Intermediate level	Maximum level
	1%	5%	5%	9%
Adequacy	National - not autonomous limited back-up capacity	European - less back-up capacity than V1	National - autonomous high back-up capacity	European - less back-up capacity than V3
Merit order	Coal before gas	Coal before gas	Gas before coal	Gas before coal
Storage	As planned today	As planned today	Decentralized	Centralized

INSERT 1 - A CONTINUOUS IMPROVEMENT - BRIEF COMPARISON TO TYNDP 2014 SCENARIOS

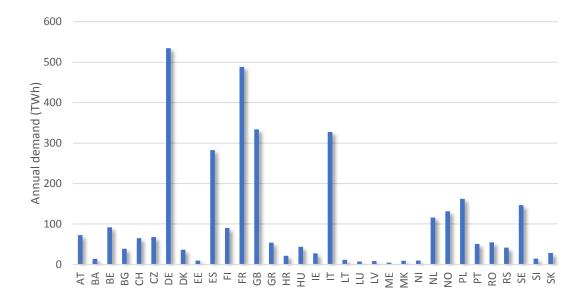
The scenarios of the TYNDP are evolving and improving in each release. The main axis of the four Vision have been kept as in the TYNDP 2014. However, based on the feedback received from the Stakeholders on the past scenarios, the parameters used to build the four 2030 Visions were updated.

Demand: One of the main change is related to the overall demand assumed in the four Visions, as well as how the demand evolve from one Vision to another. In the TYNDP 2014, the demand was increasing from Vision 1 to Vision 4. In the new scenarios, the demand is the lowest in Vision 2 where the overall demand is expected to decrease compared to 2020 (small basic growth assumed but out-weighed higher energy efficiency). On the other side, the highest demand is assumed in Vision 4 were the economic and financial condition as well as the stronger European framework lead more energy substitution to electricity (e.g. in transportation and heating).

RES optimization: In the TYNDP2014 a RES optimization was only performed for Vision 4 in order to reach EU target for 2030. A new methodology for RES optimization has been developed and applied to Vision 2 and 4. The optimization handles extra RES capacity in the ENTSO-E perimeter, but also reallocates the RES over the different countries.

Thermal optimization: In the TYNDP2014 a thermal reduction is performed based on a simple CBA exercise, resulting in limited reductions. A new methodology for thermal optimization is developed and applied to Vision 2 and Vision 4. The optimization is based on economic criterion (trade-off between fixed costs and variable generation costs).

Adequacy level: The adequacy level is explicitly described in the storyline of each Vision. In the Vision 1 it is now possible to count up to 20% of the peak load on neighbouring countries (no longer autonomous).



6 Draft results

Based on the storyline of the scenarios described in the section 5, and the methodologies summarized in section 7, market modelling experts within ENTSO-E delivered a draft quantification of the five TYNDP2016 scenarios.

Provisional results are presented within this section, including annual demand, installed capacities and annual generation, to illustrate study results stemming from the storyline assumptions and the decscribed methodologies. Please note that these draft results are expected to evolve after the consultation based on stakeholder and internal feedbacks. Please refer to section 0 for an overview of the next steps after this consultation.

The underlying data behind the graphs are also available in the Annex 2. The fuel and CO2 prices assumptions are depicted in the section 8.

2020 Best Estimate Scenario of "Expected Progress"

FIGURE 6-1 2020 EXPECTED PROGRESS - ANNUAL DEMAND

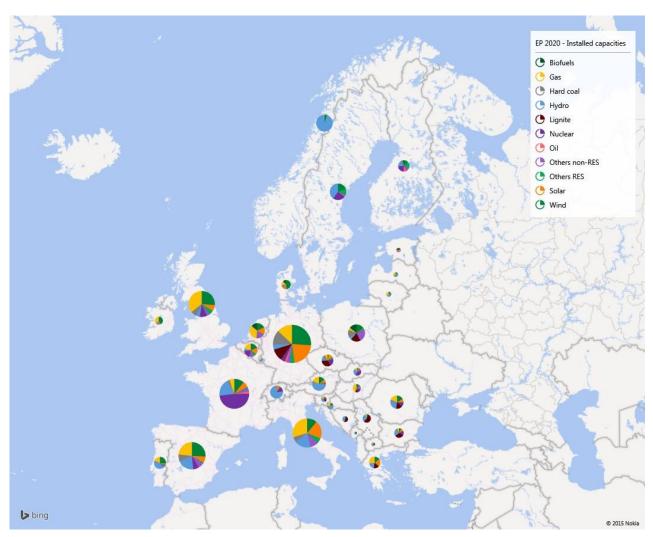


FIGURE 6-2 2020 EXPECTED PROGRESS - INSTALLED CAPACITIES

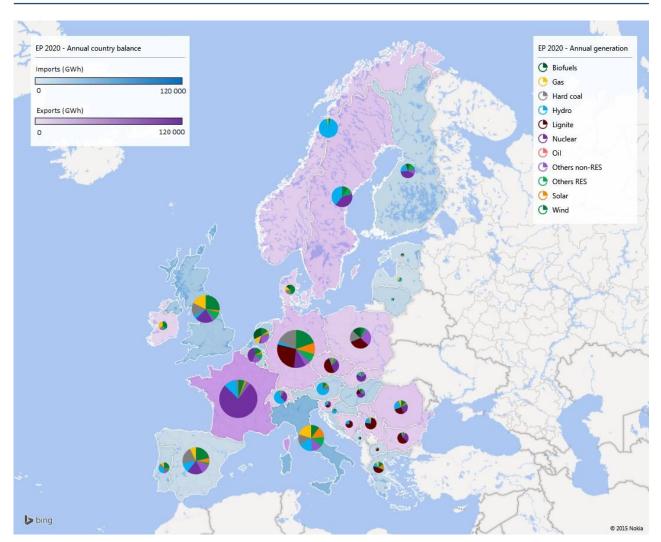



FIGURE 6-3 2020 EXPECTED PROGRESS - ANNUAL GENERATION AND COUNTRY BALANCES

2030 Vision 1 of "Slowest Progress"

FIGURE 6-4 2030 VISION 1 - ANNUAL DEMAND

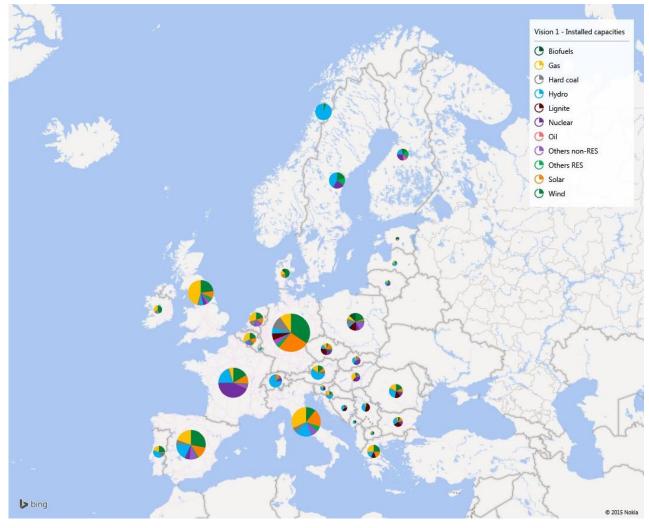


FIGURE 6-5 2030 VISION 1 - INSTALLED CAPACITIES

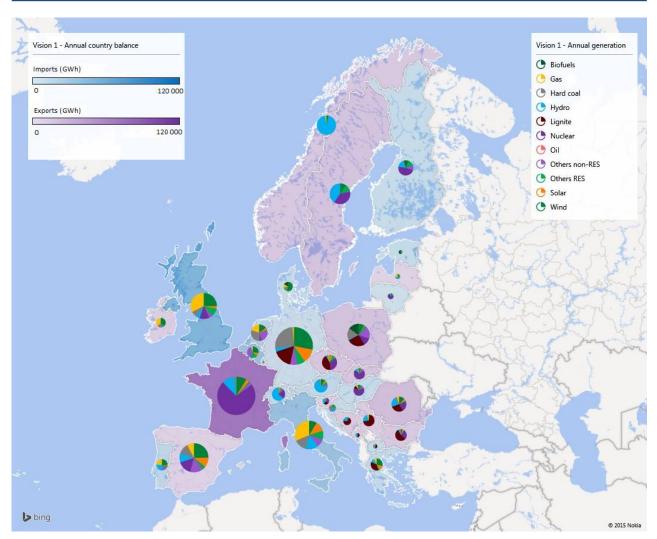


FIGURE 6-6 2030 VISION 1 - ANNUAL GENERATION AND COUNTRY BALANCES

2030 Vision 2 of "Constrained Progress"

Disclaimer: Vision 2 has been constructed as last of the five scenarios in this report. At the time of publication, the review and quality check of this particular scenario is still ongoing. As such, the Vision 2 results do not represent an ENTSO-E position for consultation yet, but are provided as working draft results.

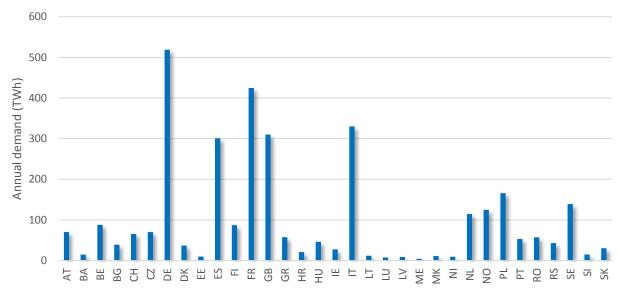
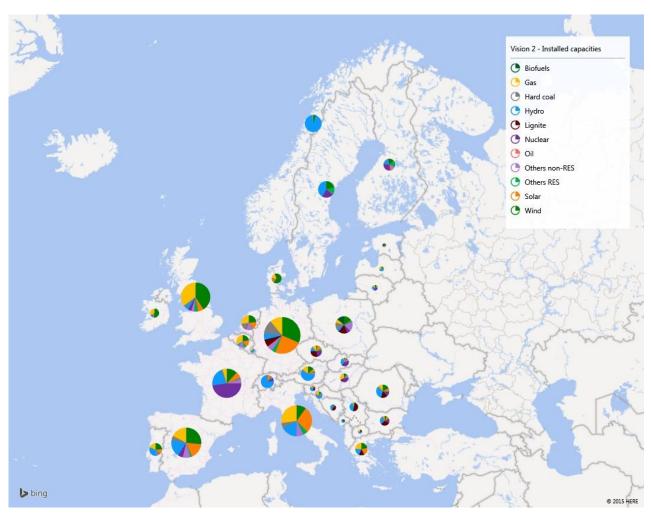


FIGURE 6-7 2030 VISION 2 - ANNUAL DEMAND



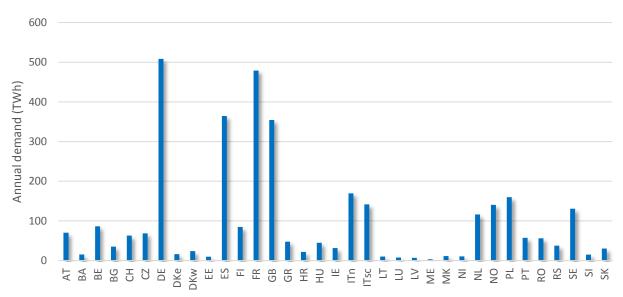

FIGURE 6-8 2030 VISION 2 - INSTALLED CAPACITIES

FIGURE 6-9 2030 VISION 2 - YEARLY GENERATION AND ANNUAL COUNTRY BALANCES

2030 Vision 3 of "National Green Transition"

FIGURE 6-10 2030 VISION 3 - ANNUAL DEMAND

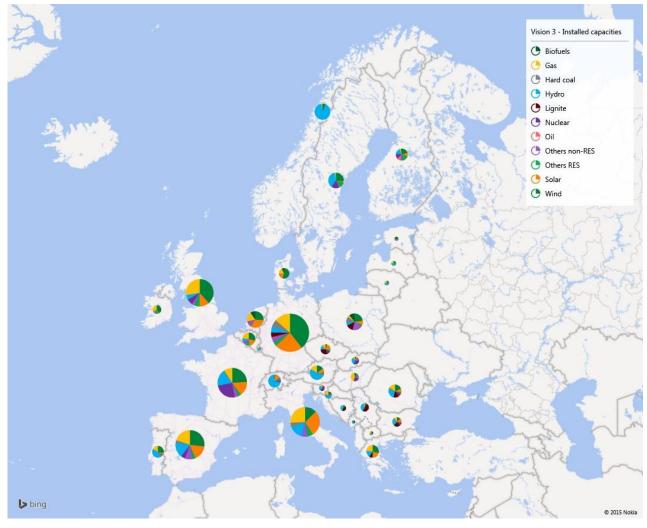


FIGURE 6-11 2030 VISION 3 - INSTALLED CAPACITIES

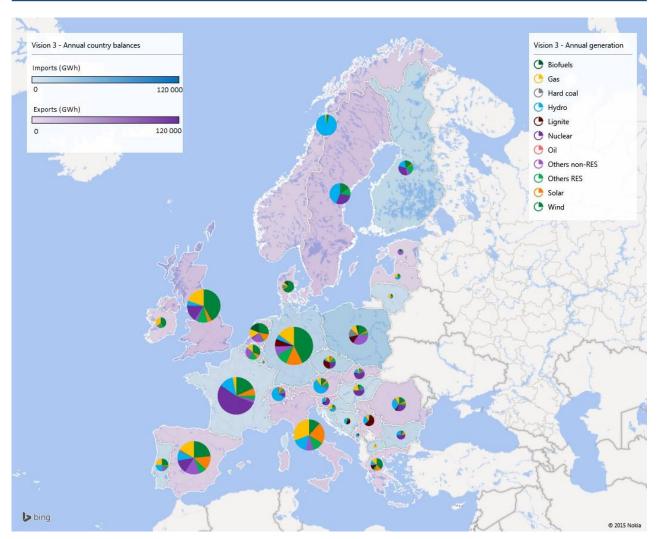
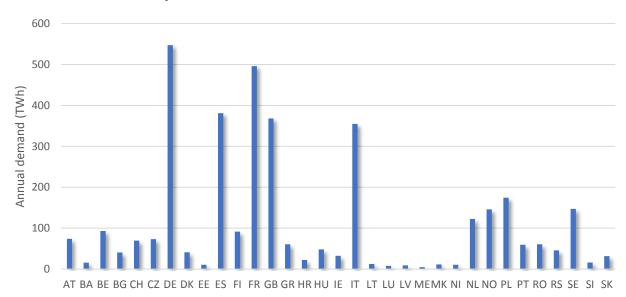



FIGURE 6-12 2030 VISION 3 - YEARLY GENERATION AND ANNUAL COUNTRY BALANCES

2030 Vision 4 of "European Green Revolution"

FIGURE 6-13 2030 VISION 4 - ANNUAL DEMAND

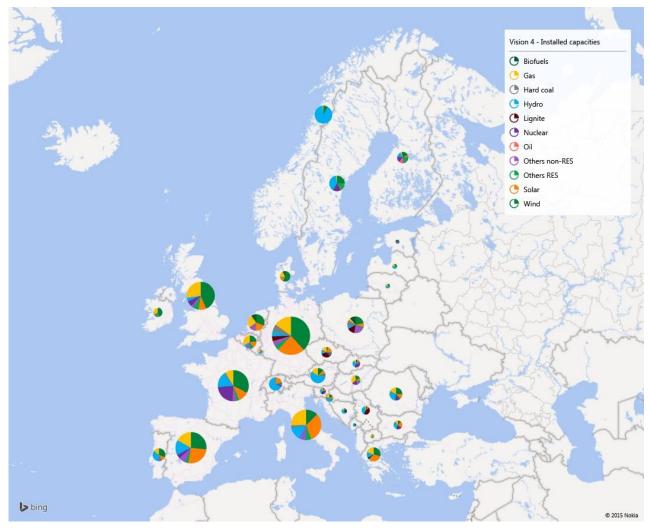


FIGURE 6-14 2030 VISION 4 - INSTALLED CAPACITIES

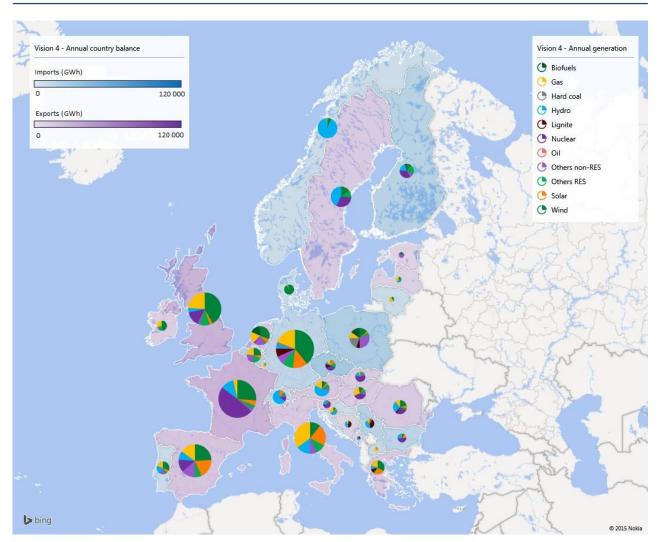


FIGURE 6-15 2030 VISION 4 - ANNUAL GENERATION AND COUNTRY BALANCES

General overview

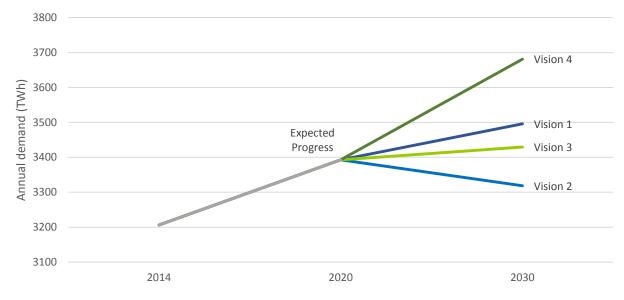
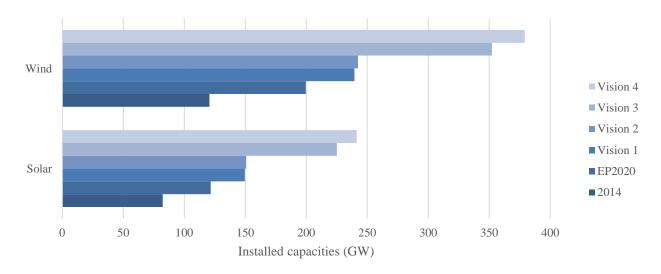



FIGURE 6-16 - COMPARISON OF THE ANNUAL DEMAND AMONG THE FIVE SCENARIOS

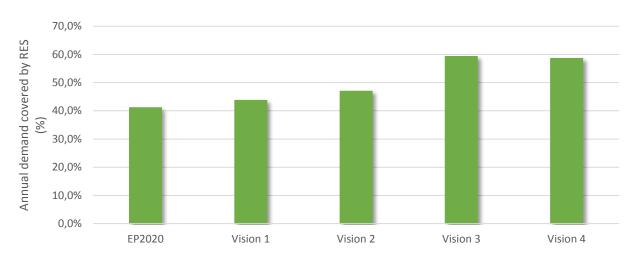

The four 2030 Visions show a range of electrical demand from 3318 TWh (Vision 2) to 3680 TWh (Vision 4), in line with the scenario storyline. The 2020 Expected Progress shows a yearly change rate of electricity demand between 2014 and 2020 of around 1%/year at the level of the ENTSO-E perimeter.

FIGURE 6-17 COMPARISON OF THE INSTALLED CAPACITIES

The installed capacity of wind and solar increases from Vision 3 to Vision 4 in order to cover the increase of demand from Vision 3 to Vision 4. Thus, Visions 3 and 4 show the same share of the electricity demand being supplied by wind and solar sources.

FIGURE 6-18 COMPARISON OF THE %RES

The percentage of the demand covered by RES spreads from 44 % in Vision 1 to close to 60 % for Visions 3 and 4. The total RES installed capacity in Vision 4 was moderately increased compared to Vision 3 in the scenario building steps (prior to the re-allocation step), in order to keep a similar share of electrical demand being covered by RES generation in both scenarios. All the 2030 Visions are expected to be in line with the recent 2030 targets set for renewables. Note that the Vision 3 and 4 (i.e. high RES) storylines are characterized by a demand which is lower as compared to TYNDP2014. Therefore even with lower installed RES capacities as in the TYNDP2014 scenarios the %RES figure still approaches 60%; in case less energy efficiency savings are assumed (thus higher electrical demand), the %RES figure would drop.

To place it in perspective of the present situation, EUROSTAT's latest report (based on 2012 data) gives a 23.5 %RES level in the EU-28 region⁶.

INSERT 2 – WHAT DOES A %RES FIGURE MEAN?

In this Scenario Development Report, the %RES value for a given scenario is calculated as the ratio of annual electrical energy generated by renewable sources (e.g. PV, wind, biomass, hydro inflow, geothermal, tidal, wave, and others), over electrical energy consumed, within the modelled countries.

The classification of renewable sources follows as much as possible the interpretation of the Renewable Energy Directive (2009/28/EC), stating that energy from renewable sources means energy from renewable non-fossil sources, namely wind, solar, aerothermal, geothermal, hydrothermal and ocean energy, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases.

It is important to note that for the purpose of the analysis in this report, only electricity is considered. While the recent Council conclusions of October 2014 set clear targets for a European renewable level of 27% by 2030, the impact on the electricity sector and the balance of efforts across industries is still assessed. Provisional prognoses (such as the 2013 "EU energy, transport, and greenhouse gas emissions trends to 2050") indicate a level of 40 to 45% of gross electricity consumption based on renewable power generation by 2030.

It is also important to note that classifications of electrical generation (in particular on biofuels and hydro) do differ across various public reports.

In addition the %RES figure is highly impacted by the denominator element in the ratio, referring to electrical demand, which demonstrates the strong link between both energy efficiency and renewable targets.

⁶ <u>http://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics</u>

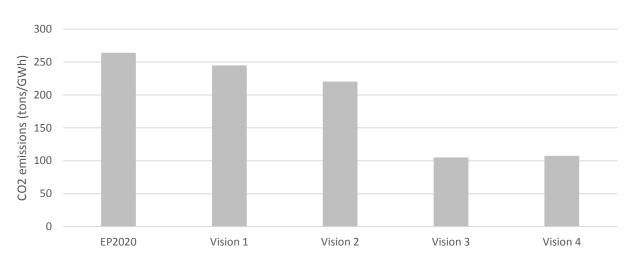
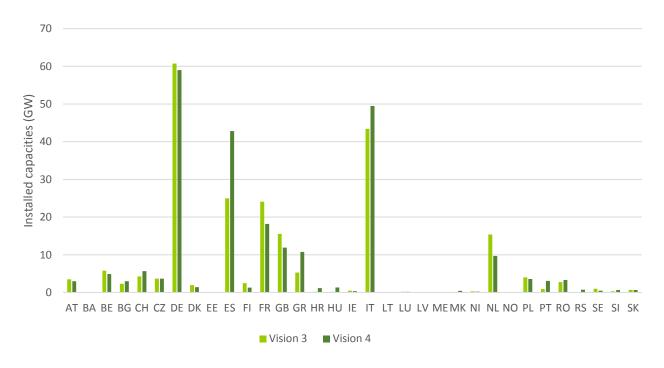
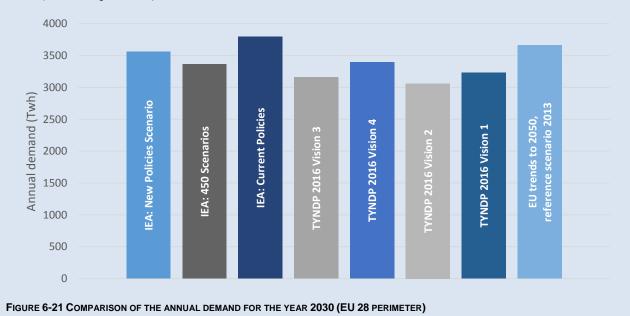



FIGURE 6-19 COMPARISON OF THE CO2 EMISSION INTENSITY IN THE 5 SCENARIOS

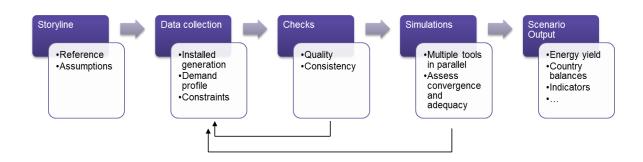
FIGURE 6-20 PV REALLOCATION FROM VISION 3 TO VISION 4


The above picture shows the effects of the RES re-allocation on the PV installed capacities, with the reallocation PV among countries between the Vision 3 (bottom-up scenario) and the Vision 4 (top-down scenario). The similar process was run for the Vision 2 building. More examples of the re-allocation (V4 wind, and V2) can be found in appendix.

INSERT 2 COMPARISON WITH OTHER SCENARIOS (EU 28 PERIMETER)

The following comparison has been performed scaling the ENTSO-E scenarios to the EU 28 perimeter to match with the EU trends to 2050 and the IEA WEO 2014 EU 28 perimeters. For the EU trends to 2050 and the WEO2014, the snapshot for the year 2030 was used as comparison basis.

In the EU 28 perimeter, the ENTSO-E 2030 Visions annual demand ranges from 3062 (Vision 2) to 3397 TWh (Vision 4). The IEA scenarios from the WEO 2014 ranges from 3362 TWh ("450 Scenario") to 3798 TWh ("Current policies").



7 Methodologies to derive pan-European scenarios

As highlighted in Section 5, the set of scenarios gives a balance between so-called bottom-up and top-down scenarios.

Bottom-up scenarios (2020 Expected Progress, and 2030 Visions 1 and 3) are driven by a straightforward process as depicted in the following graph

Note that "bottom-up" refers to approach to collect national figures to assemble a pan-European scenario. Still, the data collection is based on a single pan-European storyline (as described in Section 5) with quantitative and qualitative guidance on specific data sets for national correspondents. Data collected is next checked for quality and consistency with the storyline, which can result in an update of the bottom-up data. Also simulation results can still trigger a need for update of data to ensure a credible pan-European scenario.

Top-down scenarios (2030 Visions 2 and 4) take a bottom-up scenario as starting point (resp. 2030 Vision 1 and 3), and adapt it step by step to simulate and analyse European governance and Member State coordination.

The following steps are taken in the top-down scenario building methodology, starting from capacities and load profiles of a bottom-up scenario, and available 2030 grid models. For further insight in the methodology, please refer to Annex 1.

FIGURE 7-1 CONSTRUCTION OF THE TOP-DOWN SCENARIOS FROM THE BOTTOM-SCENARIOS

1. Amendment of load profiles

The load in the top-down scenarios is constructed using a re-scaling of the bottom-up load curves driven by energy efficiency savings, introduction of electric vehicles, introduction of heat pumps, and additional peak-shaving. Specific European targets for these demand indicators are assumed (targets are fixed based on input from stakeholders). The extent to which national load profiles are re-scaled depends on e.g. the amount of electric vehicles, heat pumps and energy efficiency measures assumed in the relevant top-down scenario.

2. Re-sizing and re-allocation of hydro

This step is only implemented in the construction of Vision 4, not for Vision 2. The methodology introduces in Vision 3 an additional amount of hydro generation in each country based on 4% of peak demand from Vision 3. Next, a distinction is made between hydro and non-hydro countries, based on a threshold of 15% of national generation capacity. The top-down Vision 4 (with strong European energy governance) assumes hydro is pooled in hydro countries (e.g. Alpine, Pyrenees and Nordic countries). For hydro-countries, the amount of hydro is increased until an estimated maximum potential. This total increase is used to re-scale (i.e. down-scale) the installed capacity in non-hydro countries.

3. RES re-allocation

A key feedback from many stakeholders in the past TYNDP2014 was the request to see a top-down scenario which optimizes installed RES capacities across Europe, with the aim to concentrate efforts for RES integration in places which optimizes the benefit for all end-consumers. Rather than performing such reallocation based on rule-of-thumbs ENTSO-E developed an optimization strategy to perform such reallocation optimization.

The objective is to minimize the total system operation cost by re-allocating the RES available (based on European targets) among all ENTSO-E countries in the most economic and efficient way, taking into account

market potential and limitations of a 2030 grid. The main constraint is to keep the total installed capacity per RES technology constant in the ENTSO-E perimeter.

The principal variables in the optimization are the revenues per installed MW per technology and per country (Rx,c). In the theoretical optimal solution, the revenues per installed MW of a particular RES technology need to be the same in all countries except in case additional constraints are reached (e.g. grid infrastructure constraints, reserve limits, etc...). The RES technologies optimised are wind onshore, wind offshore and PV.

The revenue indicators are calculated as follows:

$$R_{x,c} = \frac{\sum_{h=1}^{8760} (LMP_{h,c} * Generation_{h,x,c})}{Inst.Capacity_{x,c}} \quad (\notin MW) \qquad \begin{array}{l} x = Onshore, Offshore and PV \\ c = Country \\ h = Hour \end{array}$$

The main purpose is reaching for each country a Rx,c very close or equal to the weighted average revenue across all countries (see Figure 7-2).

The revenue indicators are translated into a re-allocation of installed RES of a particular technology across countries. The two steps of revenue indictor calculations and RES re-allocations are repeated until Rx,c converges, as does the total system operation cost (see Figure 7-3).

This step-by-step optimization is illustrated in the following example:

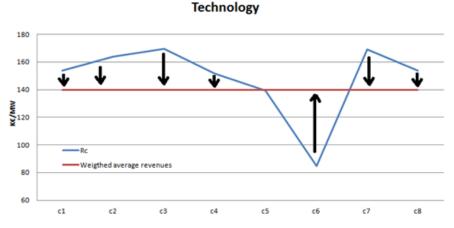


FIGURE 7-2 - EXAMPLE OF RES RE-ALLOCATION FOR A SPECIFIC TECHNOLOGY WITH IMPACT ON REVENUE INDICATORS ACROSS EIGHT COUNTRIES (LEFT)

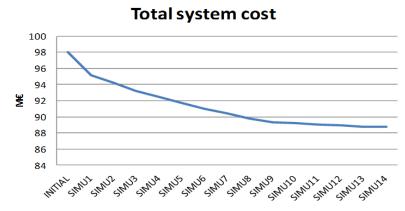


FIGURE 7-3 - EXAMPLE OF RES RE-ALLOCATION FOR A SPECIFIC TECHNOLOGY WITH IMPACT ON TOTAL SYSTEM COST WITH FOURTEEN ITERATIONS (RIGHT)

This methodology gives crucial insight in the benefit increase of step-by-step optimal re-allocations, which could be a role-model for policy initiatives on pan-European energy governance. The optimization steers new RES investments across Europe based on efficiency (climate data) and substitution of energy production with high marginal costs. It is acknowledged that the present methodology has some specific limitations: no overall shift between technologies is considered (e.g. the total installed capacity of PV remains the same, and is not 'traded' for wind), the same installation cost per technology could well be adapted by for example explore technology shifts, but this would require strong assumptions on subsidies, R&D concentration, and political drive. As the method allows for RES to be 'drawn out' of a country, minimum constraints for RES capacities per technology are applied in each country; for Vision 2 the 2020 level is taken as minimum, while for Vision 4 the average of Vision 1 and 3 is taken. No explicit maximum penetration of RES technology per country going beyond maximum penetration levels identified in RES potential studies.

The methodology could be used to explore the impact of other pan-European RES targets in case of optimal European integration of RES capacities.

4. Thermal optimization

The bottom-up scenarios based on national generation adequacy or with limited headroom of pan-European adequacy margins, potentially underestimate the value of country cooperation and thus over-estimate a generation portfolio. Also the slight increase of installed RES from V3 to V4 (in the storyline based on demand increase), could result in need for less thermal generation if pan-European collaboration is assumed.

To optimize the thermal generation fleet, a principle trade-off between variable generation costs and investment costs is taken as basis. First, non-dispatchable generation (mostly RES generation with negligible marginal costs), and hydro storage-based generation (mostly driven by peak price moments) are subtracted from the demand profile to obtain a 'residual load'. It is this residual load which is considered to be a relevant time series for conventional thermal generation.

Figure 7-4 illustrates how a combination of fixed and variable costs per technology indicates how for a given number of full-load hours one technology becomes preferable over the other. Together with the residual load profile, this is translated to an optimization problem which seeks the thermal fleet with least total costs. Taking into account potential and limitations of a 2030 grid. Specific reserve margins can be taken into

account. No explicit distinction is made between existing and planned generation for this optimization exercise. Differentiated cost assumptions could allow to take into account modernization, mothballing and de-commissioning, as well as presumed new capacity from the bottom-up scenario.

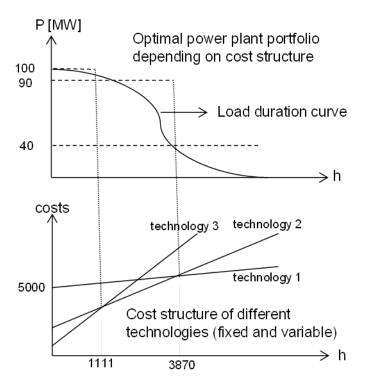


FIGURE 7-4 LINK BETWEEN RESIDUAL COST CURVE AND COST ELEMENTS OF THERMAL GENERATION TYPES, BOTH DRIVING THE THERMAL GENERATION FLEET OPTIMIZATION

8 Data references

In order to trigger the merit order that was assumed in the different storylines of the scenarios, different sources are used. The table gives an overview of the primary fuel prices and CO_2 prices used in the simulations. IEA is used as the main source, taking into account fluctuating conversion rates.

) Vision 4 2030 / Fuel prices (€/ net GJ)
Nuclear	0.46	0.46	0.46	0.46	0.46
lignite	1.1	1.1	1.1	1.1	1.1
Hard coal	2.86	3.01	3.01	2.8	2.19
Gas	8.9	9.49	9.49	7.23	7.23
light oil	15.6	17.34	17.34	13.26	13.26
Heavy oil	12.32	13.7	13.7	9.88	9.88
Oil shale	2.3	2.3	2.3	2.3	2.3
CO₂ prices (€/ton)	11	17	17	71	76
Source ⁷	IEA "Curren Policies"	t IEA "Current Policies"	t IEA "Current Policies"	•	t IEA "450" except ACO2 price (UK FES High)

⁷ World Energy Outlook 2013

9 Next steps in the TYNDP process

A public consultation on this Scenario Development Report runs from 21 May until 22 June 2015.

ENTSO-E looks forward to the suggestions from stakeholders, regulators and other institutions. After review of all feedback, and with an update of the dataset the scenario building work flow as explained in Section 8 will be repeated over the summer period. The Network Development Stakeholder Group will co-monitor the consultation and the response to it.

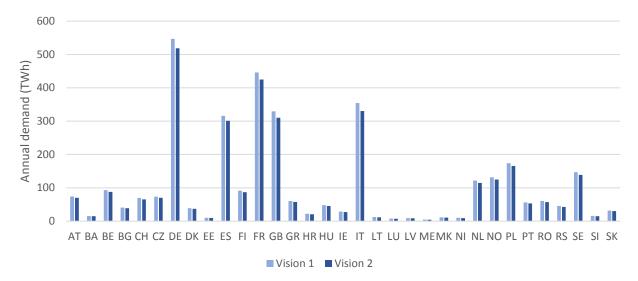
Early summer 2015 ENTSO-E will publish six new Regional Investment Plans and a list of draft TYNDP2016 project candidates. The application window for all project promoters took place during April⁸, in line with EC guidelines⁹. These regional plans will give further insight in planning studies performed by ENTSO-E regional groups to demonstrate investment needs. These studies build partly on former TYNDP2014 scenarios, and partly take into account recent information of the draft scenarios presented in this report.

As presented in the past TYNDP, ENTSO-E foresees to also explore all updated 2030 Visions to identify target capacities, which will be a key component of the final TYNDP2016 report. Such target capacity in a specific vision would show for a specific boundary which level of interconnection is reasonable from socioeconomic welfare perspective, taking into account interconnection targets and security of supply drivers.

A re-run of all market simulations to build the TYNDP2016 scenarios will be implemented during summer to update the grid constraints in the market models reflecting the latest draft list of TYNDP2016 projects.

A review of all feedback received in the consultation on this Scenario Development Report, and a view on how the draft scenarios have been improved, will be published end of Q3/2015.

With a final set of scenarios post summer 2015, as well as a consolidated list of TYNP2016 projects, ENTSO-E will start after summer 2015 until summer 2016 to assess all projects based on the Cost Benefit Analysis methodology as adopted by the EC last February. The assessment results and other main findings will feed into a draft TYNDP2016 report published for consultation in summer 2016.


⁸ <u>https://www.entsoe.eu/news-events/announcements/announcements-archive/Pages/News/Infrastructure-ENTSO-E-Invites-Project-Applications-for-Inclusion-in-the-TYNDP-2016.aspx
 ⁹ <u>https://www.entsoe.eu/Documents/TYNDP%20documents/TYNDP%202016/20150217</u> Guidelines Update ENER
 TC 24.02.2015 1st%20draft.pdf
</u>

Annex 1 of top-down scenario building methodologies

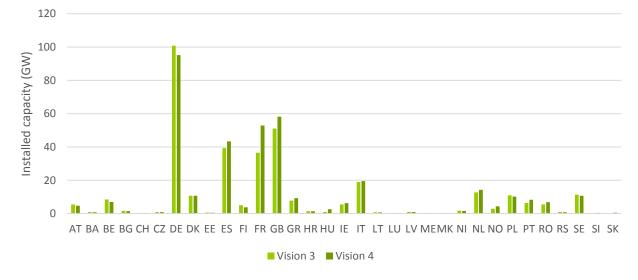
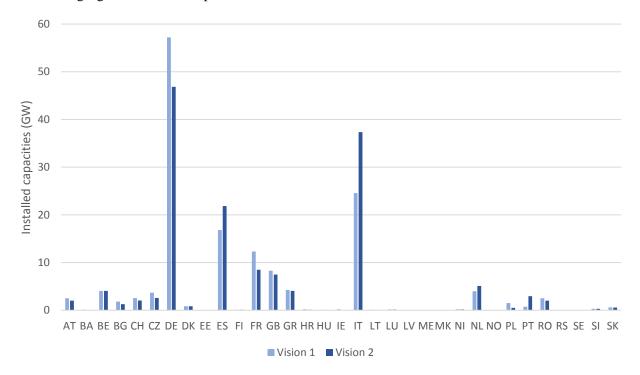
Load profile update

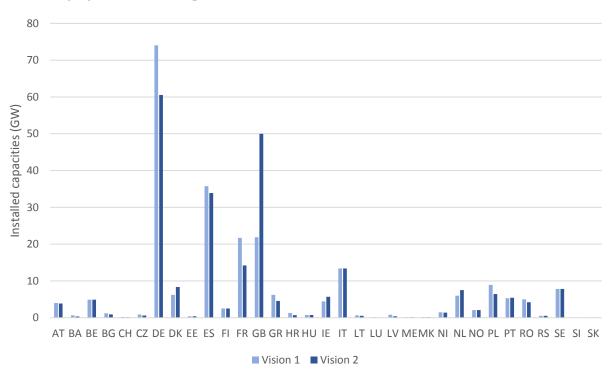
The following figure shows the impact of the load adaption from Vision 1 to Vision 2.

FIGURE - LOAD UPDATE FROM VISION 1 TO VISION 2

RES re-allocation

The following figure shows the impact of the wind production re-allocation in Vision 4.


FIGURE - WIND REALLOCATION FROM VISION 3 TO VISION 4

The following figure shows the impact of the PV re-allocation in Vision 2.

FIGURE - PV REALLOCATION FROM VISION 1 TO VISION 2

The following figure shows the impact of the wind re-allocation in Vision 2.

FIGURE - WIND REALLOCATION FROM VISION 1 TO VISION 2

Thermal optimization

The following table shows in which countries the thermal optimization exercise resulted in reduction of installed capacity going from Vision 3 to Vision 4. For other countries the methodology showed no change based on the described methodology and Vision 3 starting point.

Country	Capacity reduction (MW)
BA	1166
BG	2813
ES	5721
GR	1142
IT	3028
МК	410
RO	3549
RS	586

TABLE - EXAMPLE OF THERMAL REDUCTION FROM VISION 3 TO VISION 4

Annex 2 – Background tables

The following tables represent the dataset as visualized in Section 6 of this report. Note that the Cyprus and Iceland, which are at present isolated systems within the ENTSO-E perimeter, have not been included explicitly in these scenarios. For the purpose of project assessments particular market modelling assumptions are made.

TABLE 2 ANNUAL DEMAND ACROSS THE SCENARIOS (GWH)

Country	Expected progress 2020	2030 Vision 1	2030 Vision 2	2030 Vision 3	2030 Vision 4
AT	72243	74073	69853	70399	74095
BA	13965	15308	14576	15146	15693
BE	91885	93152	87862	86184	93247
BG	38661	40705	38831	35254	40728
СН	64852	69417	65402	63084	69533
CZ	67490	73381	69798	68389	73358
DE	534566	546765	518757	508708	547178
DK	36546	38853	36776	39810	41219
EE	9327	10194	9590	9506	10661
ES	282378	315948	301130	364239	381237
FI	90187	91236	86825	84751	91551
FR	488309	445972	424817	479198	496036
GB	333802	329349	310117	354408	368084
GR	53836	60401	57462	47724	60481
HR	21139	21966	20786	21605	22304
HU	43480	48000	45739	44785	48336
IE	27444	28783	27319	31462	32567
IT	327286	354227	330272	311285	354710
LT	11576	12517	11562	10259	12516
LU	7143	7501	7263	7661	7778
LV	8387	8982	8454	7006	9097
ME	4194	4628	4225	3142	4713
МК	9226	11249	10670	11095	11457
NI	9420	9802	9209	10391	10742
NL	115785	122012	114551	116399	122577
NO	131506	131506	124907	140384	145806
PL	162352	173922	165619	159945	174560
ΡΤ	50476	56267	53189	57303	59342
RO	54678	60305	57079	55938	60605
RS	41660	45416	42745	37708	45721
SE	146318	146762	138860	130838	147296
SI	14055	15888	14982	15094	16029
SK	28432	31576	30095	30275	31723
Total	3392602	3496062	3309320	3429374	3680981

TABLE 3 2020 EXPECTED PROGRESS - INSTALLED CAPACITIES (MW)

BA O	Country I	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
are05400014380506003200170040504900BG07977103050419720000001250900CH001510170018500248505200380017501200CH016101500217066004000038063007800256058002816028160291091000078063007800780063007800630078006300630078006300630078006300630078006300780063007800 </td <td>AT (</td> <td>0</td> <td>5119</td> <td>598</td> <td>14588</td> <td>0</td> <td>0</td> <td>196</td> <td>990</td> <td>630</td> <td>2000</td> <td>3880</td>	AT (0	5119	598	14588	0	0	196	990	630	2000	3880
BG079771080541972000000120120CH00015101510151021706600400003080630025002500DC0218602600218002180021800218002000753002500250025002500DC1720172017201720000753002500250026002500 <th< td=""><td>BA</td><td>0</td><td>0</td><td>0</td><td>2042</td><td>2158</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>350</td></th<>	BA	0	0	0	2042	2158	0	0	0	0	0	350
Cr00018100284505203801750120C216001610150021706600400003809002560560D6159117201799192184681073680639078804680560D61591177217990012911501500800600E66569401007570735120800756F758001902500043501360231034001002500F80550511035527174754089811003670560014002500F803552721747540898113013670367036003600360036003600F803552721747540898110036703600 <t< td=""><td>BE</td><td>0</td><td>5400</td><td>0</td><td>1438</td><td>0</td><td>5060</td><td>0</td><td>3200</td><td>1700</td><td>4050</td><td>4900</td></t<>	BE	0	5400	0	1438	0	5060	0	3200	1700	4050	4900
C201510150021706600400003089002500580D22292104810736806301780046605607D151117201790900121012002500753001501180010002500E69101012000753007300125080002500F58000193020002500063022300	BG (0	797	710	3050	4197	2000	0	0	0	1250	900
Def02816626914914921846810736806390789046805607Def1591177217990075301502508840640EE65694010100075307390150018002765FI5800019302300075307300231033001002500FR0695129002520006302029055500140085001390GB035527174754088101093670568074602500FR035527174754088101093670568074602500GB035527174754088101093670568074602500FR035527174754088101093670568074602500GB03502520706300000100100100100100100FR35053505130625050000100100100100100100100GB036301300260130026013002601300260100100100100100100FR <th< td=""><td>сн (</td><td>0</td><td>0</td><td>0</td><td>18510</td><td>0</td><td>2845</td><td>0</td><td>520</td><td>380</td><td>1750</td><td>120</td></th<>	сн (0	0	0	18510	0	2845	0	520	380	1750	120
DA15911721179900735020840640EE6560940000012011501180000ES02948933208007530073001200120080002765FI5800019002020003530130023001300230020003000200030002000300020002000FR0655271797540630220005000140085001300GB0555271747540831010030001003000200030	cz (0	1610	1500	2170	6600	4000	0	308	900	2560	580
Fer6569401000121150180040Fer580093328900757307300125080002750Fr58001902900043501360231033401002500Fr06551290025000630229055500140085001390GB035527174754089101003670568074602550GR055207174754089101013670568074602550GR0355272174754089101023670568074602550GR030050250210030000320300200200HT03034705200849892407850300 <t< td=""><td>DE</td><td>0</td><td>28166</td><td>26914</td><td>9149</td><td>21846</td><td>8107</td><td>3680</td><td>6390</td><td>7880</td><td>46860</td><td>56070</td></t<>	DE	0	28166	26914	9149	21846	8107	3680	6390	7880	46860	56070
set02494s9533208007573079012508002755F580019012002200043501360231034011002500FR069512900252006302290555001400850013602600GB0355271747540898110936705600140080012600GR052020369250000003700580074002500GR0520206602500000000000000GR03704870487002600260000000000000H223374005602630000000000000H23337400 <td>DK :</td> <td>1591</td> <td>1772</td> <td>1179</td> <td>9</td> <td>0</td> <td>0</td> <td>735</td> <td>0</td> <td>250</td> <td>840</td> <td>6040</td>	DK :	1591	1772	1179	9	0	0	735	0	250	840	6040
Fr580019032000435013602300340034002500GB0555272174754089811093670560040002600GR100520272174754089811093670560040002600GR10052020369028760003670560040002600HR1005202036902876003002001300020013000200130002001300020013000200130012001300120013001 <td>EE 6</td> <td>656</td> <td>94</td> <td>0</td> <td>10</td> <td>0</td> <td>0</td> <td>1291</td> <td>150</td> <td>180</td> <td>0</td> <td>400</td>	EE 6	656	94	0	10	0	0	1291	150	180	0	400
FR00512900252006302029055500140085011300GB0355272174754089811903670367056807602625GR052020366928760000367026007002000<	ES (0	24948	9533	20890	0	7573	0	7390	1250	8090	27650
GB0355272174754089811093670568074602625GR05202036692876000032040002800HR013007002500000300200100100700200HU223379405605601892407850500600700700HU2233794056850800324475850500600700HU0363497052635000324150240740024501300HU036349705263500032415024024501300HU03634970526350001315074024501340HU03634970526350001315024024501340HU03634705263500013150240240HU0364364364364364364364364364HU0364364364364364364364364364364HU0364364364364364364364364364364H	FI S	580	0	1190	3200	0	4350	1360	2310	3340	100	2500
GR105202036902876000100320040002800HR0130070025000003002000100000HU22337940560849189240708500 <th< td=""><td>FR (</td><td>0</td><td>6951</td><td>2900</td><td>25200</td><td>0</td><td>63020</td><td>2905</td><td>5500</td><td>1400</td><td>8500</td><td>13900</td></th<>	FR (0	6951	2900	25200	0	63020	2905	5500	1400	8500	13900
HR01300700250000300200100000HU22337940568491892407850500600700HU03434850508002401502401003600HI03639705026350002401350740024501003600HI0363970502635000013507400245003600HI03649705026350000135074003600HI03649756026350000135074003600HI016001750162012500000135024003600HI016201750162116200000160036003600HI0136016211620162000016003600 <th< td=""><td>GB (</td><td>0</td><td>35552</td><td>7217</td><td>4754</td><td>0</td><td>8981</td><td>109</td><td>3670</td><td>5680</td><td>7460</td><td>26250</td></th<>	GB (0	35552	7217	4754	0	8981	109	3670	5680	7460	26250
HU22337940568491892407850500600700IC03434850508002241502401003600IT036349705022635000210113507240245001400IT01260022635000013507240245001340IT0126001263000013507240245001340IT012601263000013507240245001340IT0126012630000135072402450024500IT0136412641264000135072402450024500IT01364126413641264000150024002600IT01364162416141620162016201620162016201620IT12641374162016201620162016201620162016201620IT12641374162016201620162016201620162016201620IT12641370162016201620162016201620162016201620<	GR (0	5202	0	3669	2876	0	0	0	320	4000	2800
IF034348505080032415024010360IT0363497050263500013507400245801340IT01260012560000270031007000500IT0375001344000027003100700500IT03750013440000100100500500IT037500134400000100100500IT0375001344000000100 <th< td=""><td>HR (</td><td>0</td><td>1300</td><td>700</td><td>2500</td><td>0</td><td>0</td><td>300</td><td>200</td><td>100</td><td>0</td><td>700</td></th<>	HR (0	1300	700	2500	0	0	300	200	100	0	700
IT036349705622635000113507240245801340LT012600125600007240245801340LU03750126400007240245801340LU03750126400007003100700500LU037501264000010	ни 2	223	3794	0	56	849	1892	407	850	500	60	750
If LU012600125600002703107050LU03750134400009010112090LU01036016210000150220603030LU0000001502106030303030LU00000000001003030LU0000000000303030LU0000000000303030MR0000000000100303030MK01290330666410000010030303030NI6101290330666340360360360360360360360360360360NI4610131703800380000001300360360360NI463313146159236678160001300360360360NI3800380036103610 <th< td=""><td>IE (</td><td>0</td><td>3434</td><td>850</td><td>508</td><td>0</td><td>0</td><td>324</td><td>150</td><td>240</td><td>10</td><td>3600</td></th<>	IE (0	3434	850	508	0	0	324	150	240	10	3600
LUOn375On1344OnOnOnOnPonInternational PondInternational PondInternational PondInternational PondInternational PondInternational PondInternational 	<i>IT</i> (0	36349	7056	22635	0	0	0	11350	7240	24580	13400
IV010360162100015022060360ME000078521000000120120MK029033066641000000300300100NI0129017700000000100150150100NI461011772038000048600523042051005000NI6234191161592860786000000000000PI62341911615928607860 <td>LT</td> <td>0</td> <td>1260</td> <td>0</td> <td>1256</td> <td>0</td> <td>0</td> <td>0</td> <td>270</td> <td>310</td> <td>70</td> <td>500</td>	LT	0	1260	0	1256	0	0	0	270	310	70	500
ME00785210000000120MK029033066641000003030100NI1290175000369260210100150120NI4610177203800369263101150120NI4610177203890000036920010051005000NI42503890000000000000NI461019116159389000000000000NI623419116159236078580000134070	<i>LU</i> (0	375	0	1344	0	0	0	90	10	120	90
MK029033066641000010303010NI12901750000369200110015001200NI46100117720380486005230420051005900NO0425038900389000000510050005000PI6234019116159023860781600010510950050005000PI038290576078580000134007200500050005000PI038290576078580663240140263000013400720072005000RO0593078605670000000000030003000RO63405930663240140263000000200050005000RO05930031425677000000000700070007000RO000000000000700070007000700070007000RO5000500050005000500050005000500070007000 </td <td>LV (</td> <td>0</td> <td>1036</td> <td>0</td> <td>1621</td> <td>0</td> <td>0</td> <td>0</td> <td>150</td> <td>220</td> <td>60</td> <td>360</td>	LV (0	1036	0	1621	0	0	0	150	220	60	360
NI012901750000369020110150120NO46101177203804860052304205100500NO0425003890000005230420051005000PL623419116159023807816000010510950050006450PL63241911615902380781600013400720050006450PL6324191161590785800013400720050006450PL632491116159078586632781600013400720070006400PL63907860785866326101001340070007000700070007000PL63915930786078607860786078607000<	ΜΕ	0	0	0	785	210	0	0	0	0	0	120
NL4610117720380486052304205100500NO042503890000000002080PL6234191161592386781600010510950050006450PL0382957678580001340720072005300RO04690786663240142630000300020004200RS059300314255670000000300020004200SF000162030985266001020479007840SI00185454569601100700028004000	мк	0	290	330	666	410	0	0	0	30	30	100
NO 425 0 38900 0 0 0 0 0 0 2080 PL 6234 1911 6159 2386 7816 0 0 10510 950 500 6450 PT 0 3829 576 7858 0 0 1 1340 720 720 5300 RO 4690 786 6632 4014 2630 0 0 300 2000 4200 RO 693 593 0 3142 5567 0 0 0 0 0 200 200 4200 RS 0 933 0 3142 5567 0 0 0 0 0 200 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 300	NI (0	1290	175	0	0	0	369	20	110	150	1220
PL 6234 1911 6159 2386 7816 0 0 10510 950 500 6450 PT 0 3829 576 7858 0 0 1340 720 720 5300 RO 0 4690 786 6632 4014 2630 0 0 300 2000 4200 RS 0 593 0 3142 5567 0 0 0 0 0 2000 4200 SE 0 0 16203 0 9852 660 1020 4790 0 7840 SI 16203 245 566 0 1010 700 2800 7840	NL 4	4610	11772	0	38	0	486	0	5230	420	5100	5900
PT 0 3829 576 7858 0 0 1340 720 720 530 RO 4690 786 6632 4014 2630 0 0 300 2000 4200 RS 0 593 0 3142 567 0 0 0 0 300 2000 4200 RS 0 593 0 3142 5567 0 0 0 0 200 200 300 200 4200 RS 0 593 0 3142 5567 0 0 0 0 200 200 300 200 300 300 200 300 <	ΝΟ	0	425	0	38900	0	0	0	0	0	0	2080
RO46907866632401426300030020004200RS0593031425567000020530SE00016203098526601020479007840SI4505090185454569601107028040	PL 6	6234	1911	6159	2386	7816	0	0	10510	950	500	6450
RS0593031425567000020530SE0016203098526601020479007840SI4505090185454569601107028040	рт (0	3829	576	7858	0	0	0	1340	720	720	5300
SE 0 0 16203 0 9852 660 1020 4790 0 7840 SI 45 509 0 1854 545 696 0 110 70 280 40	RO	0	4690	786	6632	4014	2630	0	0	300	2000	4200
<i>SI</i> 45 509 0 1854 545 696 0 110 70 280 40	RS (0	593	0	3142	5567	0	0	0	0	20	530
	SE (0	0	0	16203	0	9852	660	1020	4790	0	7840
<i>SK</i> 204 843 0 2556 223 2880 0 990 280 550 60	SI 4	45	509	0	1854	545	696	0	110	70	280	40
	sк 2	204	843	0	2556	223	2880	0	990	280	550	60

TABLE 4 2020 EXPECTED PROGRESS - ANNUAL GENERATION (GWH)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
ΑΤ	0	152	1966	44921	0	0	0	4158	3494	2592	6812
BA	0	0	0	5240	15435	0	0	0	0	0	550
BE	0	104	0	1657	0	35620	0	18605	10336	4518	13347
BG	0	0	659	2270	28254	13950	0	0	0	1723	1438
СН	0	0	0	44173	0	19891	0	1957	1406	2339	198
CZ	0	392	1263	3838	45058	27932	0	2278	5134	3025	967
DE	0	1139	100733	21016	152177	56437	0	26650	42693	54282	110431
DK	5461	4945	7437	27	0	0	0	0	1589	832	17012
EE	1248	0	0	70	0	0	1482	460	558	0	805
ES	0	20684	58019	35463	0	52912	0	33556	6556	16506	60291
FI	3526	0	4139	13875	0	32457	0	10752	10752	78	5451
FR	0	104	12713	62288	0	437472	0	12826	6002	10648	29847
GB	0	53321	46490	15237	0	62857	0	9286	29187	7343	79084
GR	0	3588	0	6705	20920	0	0	0	1179	6426	7058
HR	0	43	1909	5131	0	0	0	874	612	0	1123
ни	1287	500	0	248	6129	13288	0	3835	2256	79	1616
IE	0	9926	5434	1025	0	0	0	717	1642	10	10416
ΙТ	0	52845	34360	50816	0	0	0	34656	30803	34997	26689
LT	0	206	0	2289	0	0	0	547	1082	68	921
LU	0	0	0	1262	0	0	0	381	68	131	129
LV	0	2333	0	2956	0	0	0	755	1125	56	686
ΜΕ	0	0	0	1880	1407	0	0	0	0	0	188
МК	0	0	1239	1	2857	0	0	0	131	44	163
NI	0	1221	1194	0	0	0	0	102	707	141	3181
NL	29926	11888	0	105	0	3350	0	24982	2900	5521	13755
NO	0	3295	0	134897	0	0	0	0	0	0	4369
PL	22898	4	28989	3290	55940	0	0	47533	4292	557	11862
РТ	0	4157	4436	16096	0	0	0	6090	3282	1130	11563
RO	0	3713	2504	15911	18564	18177	0	0	1446	2693	8822
RS	0	2593	0	11075	39224	0	0	0	0	27	849
SE	0	0	0	66444	0	66648	0	2660	16208	0	16499
SI	236	615	0	6554	4039	5013	0	398	248	380	80
SK	1102	1164	0	5725	1399	22152	0	4065	1464	693	120

TABLE 5 2030 VISION 1 - INSTALLED CAPACITIES (MW)

-	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
AT	0	4271	598	16418	0	0	196	990	800	2500	4000
ВА	0	0	0	2107	2158	0	0	300	0	100	640
BE	0	7370	0	1438	0	0	0	3200	1700	4050	4900
BG	0	810	710	3150	4000	2000	0	0	0	1800	1200
сн	0	0	0	18510	0	2115	0	850	600	2550	220
cz	0	2020	310	2170	5330	4140	0	0	1110	3690	880
DE	0	21138	23365	10802	12610	0	1026	8650	6960	57240	74050
DK	1460	2604	410	9	0	0	735	0	260	840	6190
EE	656	94	0	10	0	0	413	160	230	0	400
ES	0	24948	6660	23450	0	7120	0	10480	2400	16800	35750
FI	580	0	805	3400	0	5550	1360	1770	3760	100	2500
FR	0	6051	1740	25200	0	57644	819	5400	1400	12300	21700
GB	0	43327	2897	4754	0	4552	109	4050	5450	8270	21870
GR	0	6252	0	4259	2876	0	0	0	480	4250	6200
HR	0	1700	1200	2700	0	0	200	300	300	200	1300
ни	210	4185	0	56	470	4108	407	720	550	60	750
IE	0	3575	750	508	0	0	260	210	250	200	4420
іт	0	40118	7926	22635	0	0	0	10160	7240	24580	13400
LT	0	740	0	1265	0	1303	0	270	310	80	650
LU	0	375	0	1344	0	0	0	90	70	150	130
LV	0	1036	0	1621	0	0	0	150	250	10	800
ME	0	0	0	1215	450	0	0	0	0	0	120
мк	0	440	530	716	410	0	0	0	30	30	150
NI	0	1690	0	0	0	0	200	20	110	200	1450
NL	0	8757	4610	38	0	486	0	5080	300	4000	6000
NO	0	425	0	38900	0	0	0	0	0	0	2080
PL	5867	2804	5492	2426	7031	3000	0	7550	1210	1500	8900
РТ	0	4156	0	7858	0	0	0	1340	720	720	5300
RO	0	4757	786	7737	4014	2630	0	0	500	2500	5000
RS	0	593	0	4308	4965	0	0	0	0	20	530
SE	0	0	0	16203	0	8937	0	470	5340	0	7840
si	45	505	0	1929	545	696	0	120	60	290	30
sк	204	843	0	3140	223	4004	0	990	310	610	90

TABLE 6 2030 VISION 1 - ANNUAL GENERATION (GWH)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
ΑΤ	0	806	3120	46823	0	0	0	4158	4429	3240	7023
BA	0	0	0	5323	15696	0	0	874	0	133	1005
BE	0	2737	0	1323	0	0	0	18605	10336	4518	13347
BG	0	0	1805	2458	27973	13926	0	0	0	2481	1918
СН	0	0	0	42962	0	14752	0	3189	2263	3409	363
CZ	0	2619	1277	3815	38146	28777	0	0	6685	4360	1467
DE	0	7094	139025	20812	90946	0	0	33537	37678	66306	15347
DK	5649	3666	3080	27	0	0	0	0	1750	832	18262
EE	3178	0	0	70	0	0	173	483	713	0	805
ES	0	23872	38302	35425	0	50040	0	46438	12587	34326	78223
FI	3127	0	3019	13875	0	41571	0	8602	11996	78	5451
FR	0	308	9640	59946	0	404128	0	12826	6002	15409	48595
GB	0	84310	19534	13604	0	32214	0	10247	26881	8140	65069
GR	0	3958	0	6526	19926	0	0	0	2140	6902	15573
HR	0	775	7474	5310	0	0	0	874	1223	451	2086
ΗU	1467	2517	0	248	3317	28898	0	3249	2482	79	1616
Ε	0	12729	4665	956	0	0	0	1007	1747	197	12788
т	0	96721	44761	48429	0	0	0	27064	30803	34997	26689
T	0	405	0	2227	0	9173	0	547	1082	78	1198
LU	0	265	0	1017	0	0	0	381	475	164	186
LV	0	2779	0	2956	0	0	0	781	1302	9	1595
ME	0	0	0	3242	3212	0	0	0	0	0	188
мк	0	383	2016	1285	2923	0	0	0	0	44	244
NI	0	3565	0	0	0	0	0	102	707	189	3964
NL	0	21003	32269	105	0	3471	0	25814	2070	4330	15477
NO	0	3295	0	134885	0	0	0	0	0	0	4369
PL	29740	365	30750	3911	49667	21192	0	34595	5377	1671	16256
PT	0	11075	0	14361	0	0	0	6090	3282	1130	11563
RO	0	4205	3452	18357	23825	18477	0	0	2408	3367	10502
RS	0	2675	0	12195	35728	0	0	0	0	27	849
SE	0	0	0	66445	0	61314	0	1370	18016	0	16499
5/	329	748	0	6199	3936	4762	0	441	233	394	60
К	1155	1157	0	6023	1474	31096	0	4064	1704	769	179

TABLE 7 2030 VISION 2 - INSTALLED CAPACITIES (MW)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
AT	0	4271	598	16418	0	0	196	990	800	2000	3880
ВА	0	0	0	2107	2158	0	0	300	0	0	350
BE	0	7370	0	1438	0	0	0	3200	1700	4050	4900
BG	0	760	710	3150	4000	2000	0	0	0	1250	900
СН	0	0	0	18510	0	2115	0	850	600	2038	120
cz	0	2020	310	2170	5330	4140	0	0	1110	2560	580
DE	0	21138	23365	10802	12610	0	1026	8650	6960	46860	60567
DK	755	2604	410	9	0	0	735	0	260	840	8349
EE	656	94	0	10	0	0	413	160	230	0	400
ES	0	22081	6660	23450	0	7120	0	10480	2400	21844	33879
FI	580	0	805	3400	0	5550	1360	1770	3760	100	2500
FR	0	6051	1740	25200	0	57644	819	5400	1400	8500	14217
GB	0	42773	2897	4754	0	4552	109	4050	5450	7460	49966
GR	0	5073	0	4259	2876	0	0	0	480	4050	4555
HR	0	1344	1200	2700	0	0	200	300	300	100	700
ни	210	3252	0	56	470	4108	407	720	550	60	750
IE	0	3575	750	508	0	0	260	210	250	10	5677
ΙΤ	0	36795	7926	22635	0	0	0	10160	7240	37356	13400
LT	0	740	0	1265	0	1303	0	270	310	70	500
LU	0	375	0	1344	0	0	0	90	70	120	90
LV	0	994	0	1621	0	0	0	150	250	10	360
ME	0	0	0	1215	450	0	0	0	0	0	120
мк	0	440	530	716	410	0	0	0	30	30	100
NI	0	1690	0	0	0	0	200	20	110	150	1390
NL	0	8757	4610	38	0	486	0	5080	300	5100	7535
NO	0	425	0	38900	0	0	0	0	0	0	2080
PL	5867	2804	5492	2426	7031	3000	0	7550	1210	500	6450
РТ	0	4156	0	7858	0	0	0	1340	720	2930	5412
RO	0	2720	786	7737	4014	2630	0	0	500	2000	4200
RS	0	593	0	4308	4965	0	0	0	0	20	530
SE	0	0	0	16203	0	8937	0	470	5340	0	7840
SI	45	505	0	1929	545	696	0	120	60	280	40
sĸ	204	448	0	3140	223	4004	0	990	310	550	60

TABLE 8 2030 VISION 2 - ANNUAL GENERATION (GWH)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
ΑΤ	0	314	2404	45189	0	0	0	4158	4429	2592	6812
BA	0	0	0	5089	15366	0	0	874	0	0	550
BE	0	1153	0	434	0	0	0	18605	10336	4518	13347
BG	0	0	1101	2446	27309	13973	0	0	0	1723	1438
СН	0	0	0	42089	0	15082	0	3189	2263	2724	198
CZ	0	2218	857	3091	37331	28752	0	0	6685	3025	967
DE	0	3498	114375	17552	88697	0	0	33537	37678	54282	126603
DK	2840	3648	2979	27	0	0	0	0	1750	832	26105
EE	2241	0	0	70	0	0	11	483	713	0	805
ES	0	16484	29732	33677	0	50358	0	46438	12587	41657	73874
FI	2434	0	1559	13875	0	40477	0	8602	11996	78	5451
FR	0	114	7527	58561	0	401631	0	12826	6002	10648	30496
GB	0	31862	14559	12582	0	31662	0	10247	26881	7343	141593
GR	0	2905	0	5956	20281	0	0	0	2140	6601	11483
HR	0	374	6738	5186	0	0	0	874	1223	314	1123
HU	1381	760	0	248	3222	28865	0	3249	2482	79	1616
IE	0	9622	3463	705	0	0	0	1007	1747	10	16425
ΙΤ	0	58778	35120	46602	0	0	0	27064	30803	53251	26689
LT	0	87	0	563	0	9170	0	547	1082	68	921
LU	0	73	0	131	0	0	0	381	475	131	129
LV	0	2185	0	2956	0	0	0	781	1302	9	686
ME	0	0	0	3242	2970	0	0	0	0	0	188
МК	0	189	1793	1285	2973	0	0	0	0	44	163
NI	0	3012	0	0	0	0	0	102	707	141	3624
NL	0	10998	29558	105	0	3399	0	25814	2070	5521	19468
NO	0	3295	0	134832	0	0	0	0	0	0	4369
PL	25564	12	26988	2387	49794	20973	0	34595	5377	557	11862
РТ	0	3759	0	13332	0	0	0	6090	3282	4281	11807
RO	0	1363	3128	18073	22643	18619	0	0	2408	2693	8822
RS	0	2622	0	11144	34948	0	0	0	0	27	849
SE	0	0	0	66445	0	58155	0	1370	18016	0	16499
SI	326	667	0	5333	3940	4912	0	441	233	380	80
ѕк	1111	0	0	4632	1406	30554	0	4064	1704	693	120

TABLE 9 2030 VISION 3 - INSTALLED CAPACITIES (MW)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
ΑΤ	0	6030	0	18471	0	0	196	990	1200	3500	5500
BA	0	373	0	2317	2158	0	0	0	0	100	900
BE	0	6840	0	2730	0	0	0	3200	2500	5800	8500
BG	0	1500	710	3468	3300	2000	0	0	0	2300	1700
СН	0	0	0	20160	0	1145	0	990	1120	4250	370
CZ	0	1990	310	2170	5330	1880	0	0	1110	3690	880
DE	0	34429	14940	14063	10209	0	871	10630	9340	60740	10075
DK	1460	3746	410	9	0	0	735	0	260	1970	10750
EE	656	94	0	20	0	0	0	1010	300	100	650
ES	0	29100	4160	25050	0	7120	0	12210	5100	25000	39300
FI	580	970	0	4150	0	3350	2165	1390	4670	2500	5000
FR	0	14051	1740	27200	0	37646	819	5400	4800	24100	36600
GB	0	36616	0	7682	0	9022	75	4110	8420	15560	51090
GR	0	6252	0	4699	2212	0	0	0	650	5300	7800
HR	0	1700	1200	3000	0	0	200	300	300	200	1500
ни	210	4977	0	100	0	3000	407	720	1040	200	1000
IE	0	4270	0	558	0	0	260	710	1200	500	5500
іт	0	39193	7056	23535	0	0	0	10160	9410	43400	18990
LT	0	923	0	1265	0	0	0	270	330	80	850
LU	0	375	0	1344	0	0	0	140	100	200	180
LV	0	1036	0	1621	0	0	0	150	400	20	1000
ME	0	0	0	1271	450	0	0	0	0	20	190
мк	0	720	330	716	410	0	0	0	30	40	200
NI	0	1590	0	50	0	0	150	180	320	300	1730
NL	4610	9358	0	38	0	486	0	5080	470	15400	12700
NO	0	855	0	40800	0	0	0	0	0	0	2910
PL	5240	1911	5389	3176	6571	0	0	9860	1210	4000	11000
PT	0	3717	0	9717	0	0	0	1560	850	910	6400
RO	0	4757	786	8087	4014	2630	0	0	800	2800	5500
RS	0	593	0	4308	5659	0	0	0	0	50	1000
SE	0	950	0	16203	0	7142	660	0	5340	1000	11400
SI	45	425	0	2005	545	1796	0	130	70	310	70
ѕк	204	843	0	3266	223	2880	0	810	520	720	260

TABLE 10 2030 VISION 3 - ANNUAL GENERATION (GWH)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
ΑΤ	0	7655	0	46957	0	0	0	4158	8422	4536	9656
BA	0	456	0	5648	5814	0	0	0	0	133	1413
BE	0	10322	0	1565	0	0	0	18605	15201	6471	23168
BG	0	5	0	6566	0	13617	0	0	0	3170	2717
СН	0	0	0	44600	0	7174	0	3687	4202	5681	611
CZ	0	6756	0	3403	17028	13113	0	0	6685	4360	1467
DE	0	73448	3261	20816	32043	0	0	38127	50599	70360	211794
DK	5642	3653	2727	27	0	0	0	0	1750	1952	31518
EE	1075	0	0	138	0	0	0	8190	931	90	1308
ES	0	61266	7166	35617	0	49967	0	54103	26748	50786	86414
FI	1738	1	0	14155	0	23299	0	6451	15053	1960	11739
FR	0	15077	0	60092	0	255886	0	12826	18123	30191	87438
GB	0	75370	0	22260	0	61632	0	10413	39120	15316	159785
GR	0	7558	0	6775	6343	0	0	0	2944	8584	19607
HR	0	5137	190	5747	0	0	0	874	1223	451	2407
HU	1340	9057	0	445	0	21000	0	3249	4692	265	2154
IE	0	13387	0	1230	0	0	0	2220	4964	492	15997
ΙΤ	0	99612	30	53311	0	0	0	27064	38369	71943	37693
LT	0	3447	0	983	0	0	0	547	1152	78	1566
LU	0	644	0	715	0	0	0	592	679	218	258
LV	0	3671	0	2956	0	0	0	781	2083	19	2017
ΜΕ	0	0	0	3302	731	0	0	0	0	64	298
МК	0	3441	80	1	0	0	0	0	0	59	325
NI	0	2417	0	73	0	0	0	502	1309	283	4791
NL	23291	19033	0	105	0	2837	0	24597	3285	16670	34361
NO	0	3282	0	140279	0	0	0	0	0	0	6113
PL	5400	12882	15536	2603	15361	0	0	44253	5377	4457	21927
РТ	0	13396	0	14691	0	0	0	7091	3835	1524	13962
RO	0	5840	2153	18907	2955	17704	0	0	3854	3771	11552
RS	0	4539	0	11328	24711	0	0	0	0	69	1602
SE	0	0	0	66445	0	42385	0	0	16931	821	24674
SI	155	796	0	6298	1467	11819	0	466	246	421	140
SK	547	2223	0	6447	1163	21827	0	3187	2432	907	518

TABLE 11 2030 VISION 4 - INSTALLED CAPACITIES (MW)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
4 <i>T</i>	0	6030	0	22244	0	0	196	990	1200	3000	4750
BA	0	373	0	2618	992	0	0	0	0	100	770
BE	0	9740	0	2226	0	0	0	3200	2500	4925	6953
BG	0	1500	710	3468	487	2000	0	0	0	2974	1450
СН	0	0	0	19745	0	1145	0	990	1120	5658	295
CZ	0	3135	310	2170	5330	1880	0	0	1110	3690	880
DE	0	37392	14940	11072	10209	0	871	10630	9340	58990	95174
DK	1460	3793	410	9	0	0	735	0	260	1405	10719
EE	656	94	0	20	0	0	0	1010	300	50	525
ES	0	27539	0	25635	0	7120	0	12210	5100	42818	43409
FI	580	970	0	3400	0	3350	2165	1390	4670	1300	3750
FR	0	14051	1740	27200	0	37646	819	5400	4800	18200	52910
GB	0	36616	0	5470	0	9022	75	4110	8420	11915	58174
GR	0	6252	0	4366	1070	0	0	0	650	10746	9294
HR	0	1700	1200	3200	0	0	200	300	300	1160	1400
ни	210	4977	0	100	0	3000	407	720	1040	1346	2612
IE	0	4270	0	558	0	0	260	710	1200	350	6259
ΙΤ	0	39193	4028	23535	0	0	0	10160	9410	49500	19580
LT	0	923	0	1265	0	0	0	270	330	80	750
LU	0	906	0	1344	0	0	0	140	100	175	155
LV	0	1036	0	1621	0	0	0	150	400	15	900
ME	0	0	0	1271	450	0	0	0	0	20	155
мк	0	720	330	716	0	0	0	0	30	450	175
NI	0	1590	0	0	0	0	150	180	320	250	1590
NL	4610	11829	0	38	0	486	0	5080	470	9700	14292
NO	0	855	0	48700	0	0	0	0	0	0	4334
PL	5240	1911	5389	3176	6571	0	0	9860	1210	3604	10235
PT	0	3717	0	9717	0	0	0	1560	850	3087	8315
RO	0	4757	786	8100	465	2630	0	0	800	3332	6903
RS	0	593	0	4308	5073	0	0	0	0	725	765
SE	0	950	0	16203	0	7142	660	0	5340	500	10687
sı	45	425	0	2005	545	1796	0	130	70	660	404
sк	204	843	0	3266	223	2880	0	810	520	665	484

TABLE 12 2030 VISION 4 - ANNUAL GENERATION (GWH)

Country	Biofuels	Gas	Hard coal	Hydro	Lignite	Nuclear	Oil	Others non-RES	Others RES	Solar	Wind
ΑΤ	0	14641	0	46313	0	0	0	4158	8422	3825	8339
BA	0	1569	0	6741	6779	0	0	0	0	133	1209
BE	0	17874	0	1433	0	0	0	18605	15201	5494	19152
BG	0	495	6	6581	36	13891	0	0	0	3998	2317
СН	0	0	0	44464	0	7880	0	3687	4202	7563	487
CZ	0	4858	12	3170	4828	13104	0	0	6685	4360	1467
DE	0	101716	13508	20311	38068	0	0	38127	50599	68333	210588
DK	120	32	182	27	0	0	0	0	1750	1392	33325
EE	1328	2	0	138	0	0	0	8190	931	90	1056
ES	0	60274	0	37013	0	49089	0	54103	26748	76682	95149
FI	3767	72	0	14133	0	25299	4	6451	15053	1019	8595
FR	0	18362	1057	60466	0	258576	0	12826	18123	22800	139398
GB	0	96888	0	21022	0	58656	0	10413	39120	11728	169605
GR	0	13949	0	6832	6384	0	0	0	2944	16793	23373
HR	0	6717	1086	5981	0	0	0	874	1223	1765	2247
HU	1479	15082	0	445	0	21106	0	3249	4692	1783	5627
IE	0	11086	0	1172	0	0	0	2220	4964	344	18151
ΙΤ	0	127804	800	52101	0	0	0	27064	38369	80240	38968
LT	0	6026	0	1426	0	0	0	547	1152	78	1382
LU	0	3940	0	667	0	0	0	592	679	191	222
LV	0	4708	0	2956	0	0	0	781	2083	14	1806
ME	0	0	0	3301	1318	0	0	0	0	64	243
МК	0	4727	546	1	0	0	0	0	0	666	285
NI	0	824	0	0	0	0	0	502	1309	236	4378
NL	24386	25322	0	105	0	3086	0	24597	3285	10500	40826
NO	0	1940	0	138468	0	0	0	0	0	0	9104
PL	22764	14446	26717	2711	8669	0	0	44253	5377	4016	19602
РТ	0	11537	0	15279	0	0	0	7091	3835	4629	18140
RO	0	7936	629	18790	2542	18125	0	0	3854	4487	14499
RS	0	4128	0	11229	12285	0	0	0	0	997	1226
SE	0	47	0	66444	0	48923	8	0	16931	411	22815
SI	79	40	0	6389	859	12333	0	466	246	896	808
SK	83	2129	0	6287	5	22350	0	3187	2432	838	965